Technological challenges in the development of silica-titania platform for integrated optics

IF 0.5 Q4 OPTICS
Ezgi Kilicaslan, Muhammad Ali Butt, Andrzej Kazmierczak, Ryszard Piramidowicz
{"title":"Technological challenges in the development of silica-titania platform for integrated optics","authors":"Ezgi Kilicaslan, Muhammad Ali Butt, Andrzej Kazmierczak, Ryszard Piramidowicz","doi":"10.4302/plp.v15i3.1221","DOIUrl":null,"url":null,"abstract":"This short report discusses the technological challenges of silica-titania (SiO2:TiO2) thin film deposited via a simple, cost-effective sol-gel process and dip-coating method. Sol-gel is a versatile method for producing materials by using a solution (sol) that undergoes a gelation process to form a solid network (gel). This process involves hydrolysis and condensation reactions of precursor molecules. Although the sol-gel application is simple and economical, it has some limitations. The aging of sol-gel materials causes a change in the properties and structure of a sol-gel system over time, causing a deterioration in the final properties of the waveguide thin films. Nanoimprint lithography is a cost-effective patterning technique that is only effective when fresh sol is used; otherwise, it leads to the formation of defective waveguide structures. Full Text: PDF References M. Ebelmen, Annl. Chim. Phys. 1846(16), 129 (1846). CrossRef H.C. Vasconcelos, Waveguide technologies in Photonics and Microwave Engineering (IntechOpen, 2020). CrossRef X. Orignac, H.C. Vasconcelos, R.M. Almeida, \"Structural study of SiO2 TiO2 sol—gel films by X-ray absorption and photoemission spectroscopies\", J. Non-Crystalline Solids 217, 155 (1997). CrossRef X. Orignac, H.C. Vasconcelos, X.M. Du, R.M. Almeida, \"Influence of Solvent Concentration on the Microstructure of SiO2-TiO2 Sol-Gel Films\", J. sol-gel Scien. Technol. 8, 243 (1997). CrossRef P. Karasiński, J. Jaglarz, J. Mazur, \"Low loss silica-titania waveguide films\", Photonics Lett. Pol. 2, 37 (2010). CrossRef A.I.G. Varela et al., Recent Applications in Sol-Gel Synthesis (InTech 2017) DirectLink M.A. Butt, \"Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration\", Coatings 12, 1115 (2022). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, A. Kaźmierczak, M. Zdończyk, L. Duda, M. Guzik, J. Olszewski, T. Martynkien, A. Bachmatiuk, R. Piramidowicz, \"Optical Thin Films Fabrication Techniques—Towards a Low-Cost Solution for the Integrated Photonic Platform: A Review of the Current Status\", Materials 29, 4591 (2022). CrossRef M.A. Butt, C. Tyszkiewicz, K. Wojtasik, P. Karasinski, A. Kazmierczak, R. Piramidowicz, \"Subwavelength Grating Waveguide Structures Proposed on the Low-Cost Silica–Titania Platform for Optical Filtering and Refractive Index Sensing Applications\", Int. J. Mol. Sci. 23, 6614 (2022). CrossRef L. Guo, \"Nanoimprint Lithography: Methods and Material Requirements\", Adv. Mater. 19, 495 (2007). CrossRef V. Prajzler, V. Chlupaty, P. Kulha, M. Neruda, S. Kopp, M. Muhlberger, \"Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique\", Nanomaterials 11, 724 (2021). CrossRef A. Cherala, P.N. Pandya, K.M. Liechti, S.V. Sreenivasan, \"Extending the resolution limits of nanoshape imprint lithography using molecular dynamics of polymer crosslinking\", Microsyst. Nanoeng. 7, 13 (2021). CrossRef K. Wojtasik, M. Zieba, C. Tyszkiewicz, W. Pakiela, G. Zak, O. Jeremiasz, E. Gondek, K. Drabczyk, P. Karasinski, \"Zinc Oxide Films Fabricated via Sol-Gel Method and Dip-Coating Technique–Effect of Sol Aging on Optical Properties, Morphology and Photocatalytic Activity\", Materials 16, 1898 (2023). CrossRef A. Kaźmierczak, M.A. Butt, M. Zięba, C. Tyszkiewicz, P. Karasiński, R. Piramidowicz, \"Towards the most convenient configuration of integrated photonic sensor for implementation in SiO2:TiO2 sol-gel derived waveguide film technology\", Proc. SPIE 12139, Optical Sensing and Detection VII; 1213908 (2022). CrossRef K. Racka-Szmidt, B. Stonio, J. Żelazko, M. Filipiak, M. Sochacki, \"A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide\", Materials 24, 123 (2021). CrossRef M.A. Butt et al.\"Development of a low-cost silica-titania optical platform for integrated photonics applications\", Opt. Expr. 30, 23678 (2022). CrossRef S. Barcelo, Z. Li, \"Nanoimprint lithography for nanodevice fabrication\", Nano Converg. 3, 21 (2016). CrossRef J-H. Shin, S-H. Lee, K-J. Byeon, K-S. Han, H. Lee, K. Tsunozaki, \"Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film\", Nanoscale Res. Lett. 6, 458 (2011). CrossRef U. Tahir, Y.B. Shim, M.A. Kamran, D-I. Kim, M. Y. Jeong, \"Nanofabrication Techniques: Challenges and Future Prospects\", J. Nanosc. Nanotechnol. 21, 4981 (2021). CrossRef M.A. Butt, M. Shahbaz, L. Kozłowski, A. Kaźmierczak, R. Piramidowicz, \"A Concise Review of the Progress in Photonic Sensing Devices\", Photonics 10, 208 (2023). CrossRef M.A. Butt et al. \"HYPHa project: a low-cost alternative for integrated photonics\", Photonics Lett. Pol. 14, 25 (2022). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"35 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v15i3.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This short report discusses the technological challenges of silica-titania (SiO2:TiO2) thin film deposited via a simple, cost-effective sol-gel process and dip-coating method. Sol-gel is a versatile method for producing materials by using a solution (sol) that undergoes a gelation process to form a solid network (gel). This process involves hydrolysis and condensation reactions of precursor molecules. Although the sol-gel application is simple and economical, it has some limitations. The aging of sol-gel materials causes a change in the properties and structure of a sol-gel system over time, causing a deterioration in the final properties of the waveguide thin films. Nanoimprint lithography is a cost-effective patterning technique that is only effective when fresh sol is used; otherwise, it leads to the formation of defective waveguide structures. Full Text: PDF References M. Ebelmen, Annl. Chim. Phys. 1846(16), 129 (1846). CrossRef H.C. Vasconcelos, Waveguide technologies in Photonics and Microwave Engineering (IntechOpen, 2020). CrossRef X. Orignac, H.C. Vasconcelos, R.M. Almeida, "Structural study of SiO2 TiO2 sol—gel films by X-ray absorption and photoemission spectroscopies", J. Non-Crystalline Solids 217, 155 (1997). CrossRef X. Orignac, H.C. Vasconcelos, X.M. Du, R.M. Almeida, "Influence of Solvent Concentration on the Microstructure of SiO2-TiO2 Sol-Gel Films", J. sol-gel Scien. Technol. 8, 243 (1997). CrossRef P. Karasiński, J. Jaglarz, J. Mazur, "Low loss silica-titania waveguide films", Photonics Lett. Pol. 2, 37 (2010). CrossRef A.I.G. Varela et al., Recent Applications in Sol-Gel Synthesis (InTech 2017) DirectLink M.A. Butt, "Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration", Coatings 12, 1115 (2022). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, A. Kaźmierczak, M. Zdończyk, L. Duda, M. Guzik, J. Olszewski, T. Martynkien, A. Bachmatiuk, R. Piramidowicz, "Optical Thin Films Fabrication Techniques—Towards a Low-Cost Solution for the Integrated Photonic Platform: A Review of the Current Status", Materials 29, 4591 (2022). CrossRef M.A. Butt, C. Tyszkiewicz, K. Wojtasik, P. Karasinski, A. Kazmierczak, R. Piramidowicz, "Subwavelength Grating Waveguide Structures Proposed on the Low-Cost Silica–Titania Platform for Optical Filtering and Refractive Index Sensing Applications", Int. J. Mol. Sci. 23, 6614 (2022). CrossRef L. Guo, "Nanoimprint Lithography: Methods and Material Requirements", Adv. Mater. 19, 495 (2007). CrossRef V. Prajzler, V. Chlupaty, P. Kulha, M. Neruda, S. Kopp, M. Muhlberger, "Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique", Nanomaterials 11, 724 (2021). CrossRef A. Cherala, P.N. Pandya, K.M. Liechti, S.V. Sreenivasan, "Extending the resolution limits of nanoshape imprint lithography using molecular dynamics of polymer crosslinking", Microsyst. Nanoeng. 7, 13 (2021). CrossRef K. Wojtasik, M. Zieba, C. Tyszkiewicz, W. Pakiela, G. Zak, O. Jeremiasz, E. Gondek, K. Drabczyk, P. Karasinski, "Zinc Oxide Films Fabricated via Sol-Gel Method and Dip-Coating Technique–Effect of Sol Aging on Optical Properties, Morphology and Photocatalytic Activity", Materials 16, 1898 (2023). CrossRef A. Kaźmierczak, M.A. Butt, M. Zięba, C. Tyszkiewicz, P. Karasiński, R. Piramidowicz, "Towards the most convenient configuration of integrated photonic sensor for implementation in SiO2:TiO2 sol-gel derived waveguide film technology", Proc. SPIE 12139, Optical Sensing and Detection VII; 1213908 (2022). CrossRef K. Racka-Szmidt, B. Stonio, J. Żelazko, M. Filipiak, M. Sochacki, "A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide", Materials 24, 123 (2021). CrossRef M.A. Butt et al."Development of a low-cost silica-titania optical platform for integrated photonics applications", Opt. Expr. 30, 23678 (2022). CrossRef S. Barcelo, Z. Li, "Nanoimprint lithography for nanodevice fabrication", Nano Converg. 3, 21 (2016). CrossRef J-H. Shin, S-H. Lee, K-J. Byeon, K-S. Han, H. Lee, K. Tsunozaki, "Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film", Nanoscale Res. Lett. 6, 458 (2011). CrossRef U. Tahir, Y.B. Shim, M.A. Kamran, D-I. Kim, M. Y. Jeong, "Nanofabrication Techniques: Challenges and Future Prospects", J. Nanosc. Nanotechnol. 21, 4981 (2021). CrossRef M.A. Butt, M. Shahbaz, L. Kozłowski, A. Kaźmierczak, R. Piramidowicz, "A Concise Review of the Progress in Photonic Sensing Devices", Photonics 10, 208 (2023). CrossRef M.A. Butt et al. "HYPHa project: a low-cost alternative for integrated photonics", Photonics Lett. Pol. 14, 25 (2022). CrossRef
集成光学硅钛平台开发中的技术挑战
这篇简短的报告讨论了通过简单、经济的溶胶-凝胶法和浸涂法沉积二氧化硅-二氧化钛(SiO2:TiO2)薄膜的技术挑战。溶胶-凝胶是一种通用的生产材料的方法,它使用溶液(溶胶),经过凝胶化过程形成固体网络(凝胶)。这一过程涉及前体分子的水解和缩合反应。溶胶-凝胶法虽然简单、经济,但也存在一定的局限性。随着时间的推移,溶胶-凝胶材料的老化会导致溶胶-凝胶体系的性能和结构发生变化,从而导致波导薄膜的最终性能恶化。纳米压印技术是一种具有成本效益的制版技术,只有在使用新鲜溶胶时才有效;否则,会导致形成有缺陷的波导结构。参考文献M. Ebelmen, Annl。詹。物理学。1846(16),129(1846)。CrossRef H.C. Vasconcelos,光子学和微波工程中的波导技术(IntechOpen, 2020)。CrossRef X. Orignac, H.C. Vasconcelos, R.M. Almeida,“二氧化硅-二氧化钛溶胶-凝胶膜的x射线吸收和光发射光谱结构研究”,非结晶固体,217,155(1997)。* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *。技术8,243(1997)。CrossRef P. Karasiński, J. Jaglarz, J. Mazur,“低损耗二氧化硅-二氧化钛波导薄膜”,光子学杂志。高分子学报,2010,37(2010)。CrossRef A.I.G. Varela et al.,溶胶-凝胶合成技术的最新应用(InTech 2017)交叉ref M. a . Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, a . Kaźmierczak, M. Zdończyk, L. Duda, M. Guzik, J. Olszewski, T. Martynkien, a . Bachmatiuk, R. Piramidowicz,“光学薄膜制造技术-迈向集成光子平台的低成本解决方案:现状综述”,材料29,4591(2022)。M.A. Butt, C. Tyszkiewicz, K. Wojtasik, P. Karasinski, A. Kazmierczak, R. Piramidowicz,“基于低成本二氧化硅-二氧化钛平台的亚波长光栅波导结构的光学滤波和折射率传感应用”生物医学工程学报,2003,18(3):481 - 481。郭磊,“纳米压印技术的研究与应用”,材料学报,1999,495(2007)。CrossRef V. Prajzler, V. Chlupaty, P. Kulha, M. Neruda, S. Kopp, M. Muhlberger,“卷到板纳米压印技术制备光学聚合物波导”,纳米材料,11,724(2021)。[10]陈建军,陈建军,陈建军,“基于分子动力学的纳米压印技术研究”,高分子材料学报。纳米能,7,13(2021)。[CrossRef] K. Wojtasik, M. Zieba, C. Tyszkiewicz, W. Pakiela, G. Zak, O. Jeremiasz, E. Gondek, K. Drabczyk, P. Karasinski,“溶胶-凝胶法制备氧化锌薄膜的光学性能、形貌和光催化活性的影响”,材料学报,1998(2023)。CrossRef A. Kaźmierczak, M.A. Butt, M. Zięba, C. Tyszkiewicz, P. Karasiński, R. Piramidowicz,“在SiO2中实现集成光子传感器的最方便配置:TiO2溶胶-凝胶衍生波导膜技术”,Proc. SPIE 12139,光学传感与检测VII;1213908(2022)。CrossRef K. Racka-Szmidt, B. Stonio, J. Żelazko, M. Filipiak, M. Sochacki,“电感耦合等离子体反应离子刻蚀碳化硅的研究进展”,材料24,123(2021)。CrossRef M.A. Butt等。“低成本二氧化硅-二氧化钛集成光子学光学平台的开发”,光学学报,30,23678(2022)。CrossRef S. Barcelo,李志明,“纳米压印技术在纳米器件制造中的应用”,纳米材料,2016,21(2016)。CrossRef陶宏根。Shin - h。李,K-J。机构,钴。Han, H. Lee, K. Tsunozaki,“柔性UV纳米压印模的制备与氟化聚合物涂层PET薄膜”,纳米材料学报,6,458(2011)。CrossRef U. Tahir, Y.B. Shim, M.A. Kamran, D-I。金,郑明义,“纳米加工技术:挑战与未来展望”,j。纳米技术,21,49(2021)。CrossRef M.A. Butt, M. Shahbaz, L. Kozłowski, A. Kaźmierczak, R. Piramidowicz,“光子传感器件研究进展综述”,光子学报,2008(2023)。CrossRef M.A. Butt等。“HYPHa项目:集成光子学的低成本替代方案”,《光子快报》。Pol. 14,25(2022)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信