{"title":"Sedimentary phosphorus burial in three contrasting boreal lakes in Finland","authors":"Johanna Laakso, Tom Jilbert, Timo Saarinen","doi":"10.1007/s10201-023-00730-9","DOIUrl":null,"url":null,"abstract":"Abstract Permanent phosphorus (P) burial in sediment regulates lake trophic state over long timescales, but the controls on P burial are only partially understood. A diversity of biogeochemical settings may be found in lake sediments, which may have a strong impact on the processes controlling P burial from one location to another. Here, we investigate early diagenesis of P in three contrasting lakes in Southwest Finland. Eutrophic Lake Köyliönjärvi and mesotrophic Lake Pyhäjärvi have a history of nutrient loadings from agriculture, while Lake Vähäjärvi is an oligotrophic small forest lake, leading to potentially contrasting sediment biogeochemical dynamics. We combined porewater data and solid-phase sediment geochemical data to identify P phases in each system and investigate the dominant processes controlling P burial. Porewater profiles showed opposite gradients between the oligotrophic and the mesotrophic/eutrophic systems, implying net diffusive fluxes into and out of the sediments, respectively. Furthermore, sediment P data showed contrasting P speciation. Reactive P is buried in all systems, but the role of reducible iron (Fe) oxides in P retention is greater in mesotrophic/eutrophic lakes. In the oligotrophic system, aluminium (Al) oxides controlled P sorption into the sediment after diffusion from lake water. Evidence for vivianite formation was found only in the mesotrophic Lake Pyhäjärvi sediment, where 42–47% of total P was released in a Fe(II)-P specific extraction from the deeper part of the sediment column and vivianite crystals could be isolated from sediment samples.","PeriodicalId":18079,"journal":{"name":"Limnology","volume":"32 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10201-023-00730-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Permanent phosphorus (P) burial in sediment regulates lake trophic state over long timescales, but the controls on P burial are only partially understood. A diversity of biogeochemical settings may be found in lake sediments, which may have a strong impact on the processes controlling P burial from one location to another. Here, we investigate early diagenesis of P in three contrasting lakes in Southwest Finland. Eutrophic Lake Köyliönjärvi and mesotrophic Lake Pyhäjärvi have a history of nutrient loadings from agriculture, while Lake Vähäjärvi is an oligotrophic small forest lake, leading to potentially contrasting sediment biogeochemical dynamics. We combined porewater data and solid-phase sediment geochemical data to identify P phases in each system and investigate the dominant processes controlling P burial. Porewater profiles showed opposite gradients between the oligotrophic and the mesotrophic/eutrophic systems, implying net diffusive fluxes into and out of the sediments, respectively. Furthermore, sediment P data showed contrasting P speciation. Reactive P is buried in all systems, but the role of reducible iron (Fe) oxides in P retention is greater in mesotrophic/eutrophic lakes. In the oligotrophic system, aluminium (Al) oxides controlled P sorption into the sediment after diffusion from lake water. Evidence for vivianite formation was found only in the mesotrophic Lake Pyhäjärvi sediment, where 42–47% of total P was released in a Fe(II)-P specific extraction from the deeper part of the sediment column and vivianite crystals could be isolated from sediment samples.
期刊介绍:
Limnology is a scientific journal published three times a year, in January, April, and August, by Springer in association with the Japanese Society of Limnology. The editors welcome original scientific contributions on physical, chemical, biological, or related research, including environmental issues, on any aspect of basic, theoretical, or applied limnology that present significant findings for the community of scholars. The journal publishes Rapid communications, Research papers, Review articles, Asia/Oceania reports, and Comments.
The aims and scope of Limnology are to publish scientific and/or technical papers in limnological sciences, to serve as a platform for information dissemination among scientists and practitioners, to enhance international links, and to contribute to the development of limnology.