{"title":"Influence of combined electromechanical processing modes of 40Kh steel on its structure and hardness","authors":"A. S. Simachev, T. N. Oskolkova, R. A. Shevchenko","doi":"10.17073/0368-0797-2023-4-421-426","DOIUrl":null,"url":null,"abstract":"The paper considers the effect of combined electromechanical processing in three different modes on the structure and hardness of the surface layers of 40Kh steel, which was in a normalized state (the original structure). The modes differ from each other by the different applied load and the number of pulses. The applied load in modes 1 and 2 (current strength 39 kA, pulse time 0.02 s, number of pulses 1) is 100 and 250 MPa, respectively. A distinctive feature of mode 3 compared to mode 2 is a greater number of pulses (two). Metallographically it was established that in all three cases a hardened surface layer of different thickness (from 300 to 1200 μm) with a hardness of 593 – 598 HV is formed, consisting of two zones (a surface zone with a structure of fine-needle martensite; a transition zone smoothly transitioning into the initial ferrite structure). The transition zone (treatment according to mode 1 ) in its structure contains martensite and ferrite. The transition zone (mode 2 processing) consists of a Widemannstett structure. A more substantial surface heating zone according to this mode (700 μm) in comparison with the processing according to mode 1 (300 μm) in combination with intensive heat removal contributed to the formation of a Widmanstett structure, which is defective and unacceptable for operation. The transition zone with the processing according to mode 3 has the structure of martensite and ferrite. The formation of a defective Widmanstett structure in the transition zone does not occur, since 2 times more pulses are used during processing than in mode 2 . This contributes to the heating of the surface layer to a greater depth (1200 μm), and, consequently, the structure formation in the transition zone occurs from the intercritical interval Ag 3 – Ag 1 .","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2023-4-421-426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the effect of combined electromechanical processing in three different modes on the structure and hardness of the surface layers of 40Kh steel, which was in a normalized state (the original structure). The modes differ from each other by the different applied load and the number of pulses. The applied load in modes 1 and 2 (current strength 39 kA, pulse time 0.02 s, number of pulses 1) is 100 and 250 MPa, respectively. A distinctive feature of mode 3 compared to mode 2 is a greater number of pulses (two). Metallographically it was established that in all three cases a hardened surface layer of different thickness (from 300 to 1200 μm) with a hardness of 593 – 598 HV is formed, consisting of two zones (a surface zone with a structure of fine-needle martensite; a transition zone smoothly transitioning into the initial ferrite structure). The transition zone (treatment according to mode 1 ) in its structure contains martensite and ferrite. The transition zone (mode 2 processing) consists of a Widemannstett structure. A more substantial surface heating zone according to this mode (700 μm) in comparison with the processing according to mode 1 (300 μm) in combination with intensive heat removal contributed to the formation of a Widmanstett structure, which is defective and unacceptable for operation. The transition zone with the processing according to mode 3 has the structure of martensite and ferrite. The formation of a defective Widmanstett structure in the transition zone does not occur, since 2 times more pulses are used during processing than in mode 2 . This contributes to the heating of the surface layer to a greater depth (1200 μm), and, consequently, the structure formation in the transition zone occurs from the intercritical interval Ag 3 – Ag 1 .