A synergetic cocatalyst for conversion of carbon dioxide, sunlight and water into methanol

Zetian Mi, Victor Batista, Zhengwei Ye, Ke Yang, Peng Zhou, Ishtiaque Navid, Yixin Xiao, Alexandre Pofelska, Gianluigi Botton, Tao Ma, Shubham Mondal
{"title":"A synergetic cocatalyst for conversion of carbon dioxide, sunlight and water into methanol","authors":"Zetian Mi, Victor Batista, Zhengwei Ye, Ke Yang, Peng Zhou, Ishtiaque Navid, Yixin Xiao, Alexandre Pofelska, Gianluigi Botton, Tao Ma, Shubham Mondal","doi":"10.21203/rs.3.rs-2066613/v1","DOIUrl":null,"url":null,"abstract":"Abstract The conversion of CO 2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO 2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface, as shown by density functional theory. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO 2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO 2 with a record high solar-to-methanol efficiency of 0.29%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO 2 that could provide a viable path towards carbon neutrality and environmental sustainability.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-2066613/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The conversion of CO 2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO 2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface, as shown by density functional theory. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO 2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO 2 with a record high solar-to-methanol efficiency of 0.29%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO 2 that could provide a viable path towards carbon neutrality and environmental sustainability.
一种将二氧化碳、阳光和水转化为甲醇的协同助催化剂
仅利用阳光和水将二氧化碳转化为液体燃料,为实现碳中和提供了一条有希望的途径。一个突出的挑战是实现高效率和产品选择性。在这里,我们介绍了一种无线光催化结构,用于将二氧化碳和水转化为甲醇和氧气。催化材料由装饰有核壳纳米粒子的半导体纳米线组成,具有铜铑核和氧化铬壳。如密度泛函理论所示,Rh/CrOOH界面为质子还原提供了单向通道,使氢在核-壳界面溢出。质子、电子和氢原子的矢量传递使得二氧化碳还原机制从水溶液中的质子耦合电子转移途径转变为二氧化碳的加氢,太阳能转化为甲醇的效率达到了创纪录的0.29%。该研究成果展示了一种高效、稳定、可扩展的无线系统,用于从二氧化碳中合成甲醇,为实现碳中和和环境可持续性提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信