Thomas Van der Jagt, Geurt Jongbloed, Martina Vittorietti
{"title":"Existence and approximation of densities of chord length- and cross section area distributions","authors":"Thomas Van der Jagt, Geurt Jongbloed, Martina Vittorietti","doi":"10.5566/ias.2923","DOIUrl":null,"url":null,"abstract":"In various stereological problems an $n$-dimensional convex body is intersected with an $(n-1)$-dimensional Isotropic Uniformly Random (IUR) hyperplane. In this paper the cumulative distribution function associated with the $(n-1)$-dimensional volume of such a random section is studied. This distribution is also known as chord length distribution and cross section area distribution in the planar and spatial case respectively. For various classes of convex bodies it is shown that these distribution functions are absolutely continuous with respect to Lebesgue measure. A Monte Carlo simulation scheme is proposed for approximating the corresponding probability density functions.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"34 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5566/ias.2923","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In various stereological problems an $n$-dimensional convex body is intersected with an $(n-1)$-dimensional Isotropic Uniformly Random (IUR) hyperplane. In this paper the cumulative distribution function associated with the $(n-1)$-dimensional volume of such a random section is studied. This distribution is also known as chord length distribution and cross section area distribution in the planar and spatial case respectively. For various classes of convex bodies it is shown that these distribution functions are absolutely continuous with respect to Lebesgue measure. A Monte Carlo simulation scheme is proposed for approximating the corresponding probability density functions.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.