{"title":"New Structure of Channel Coding: Serial Concatenation of Polar Codes","authors":"Mohammed Mensouri, Mustapha Eddahibi","doi":"10.5121/ijwmn.2023.15501","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new coding and decoding structure for enhancing the reliability and performance of polar codes, specifically at low error rates. We achieve this by concatenating two polar codes in series to create robust error-correcting codes. The primary objective here is to optimize the behavior of individual elementary codes within polar codes. In this structure, we incorporate interleaving, a technique that rearranges bits to maximize the separation between originally neighboring symbols. This rearrangement is instrumental in converting error clusters into distributed errors across the entire sequence. To evaluate their performance, we proposed to model a communication system with seven components: an information source, a channel encoder, a modulator, a channel, a demodulator, a channel decoder, and a destination. This work focuses on evaluating the bit error rate (BER) of codes for different block lengths and code rates. Next, we compare the bit error rate (BER) performance between our proposed method and polar codes.","PeriodicalId":486997,"journal":{"name":"International journal of wireless and mobile networks","volume":"780 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of wireless and mobile networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijwmn.2023.15501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a new coding and decoding structure for enhancing the reliability and performance of polar codes, specifically at low error rates. We achieve this by concatenating two polar codes in series to create robust error-correcting codes. The primary objective here is to optimize the behavior of individual elementary codes within polar codes. In this structure, we incorporate interleaving, a technique that rearranges bits to maximize the separation between originally neighboring symbols. This rearrangement is instrumental in converting error clusters into distributed errors across the entire sequence. To evaluate their performance, we proposed to model a communication system with seven components: an information source, a channel encoder, a modulator, a channel, a demodulator, a channel decoder, and a destination. This work focuses on evaluating the bit error rate (BER) of codes for different block lengths and code rates. Next, we compare the bit error rate (BER) performance between our proposed method and polar codes.