The Use of XGBoost Algorithm to Analyse the Severity of Traffic Accident Victims

I Made Sukarsa, Ni Kadek Dwi Rusjayanthi, Made Srinitha Millinia Utami, Ni Wayan Wisswani
{"title":"The Use of XGBoost Algorithm to Analyse the Severity of Traffic Accident Victims","authors":"I Made Sukarsa, Ni Kadek Dwi Rusjayanthi, Made Srinitha Millinia Utami, Ni Wayan Wisswani","doi":"10.24843/lkjiti.2023.v14.i01.p04","DOIUrl":null,"url":null,"abstract":"Traffic accidents are still significant contributors to a fairly high death. Denpasar’s resort police record every traffic accident in the form of a daily report. The stored data can generate valuable information to improve policies and propagate better traffic practices. This research utilizes the classification technique with the XGBoost, random forest algorithm, and SMOTE method. The study shows that the SMOTE technique can increase the model's accuracy. Using the classification method with the two algorithms produces factors that affect the severity of traffic accident victims with feature importance. The feature importance obtained using the XGBoost model by counting the weight value for testing using the original dataset, the dataset for the type of two-wheeled vehicle, and the dataset of the kind of vehicle other than two-wheeled indicate that the variables influencing the severity of victims in road accidents are the time of accident between 00.00-06.00, the type of vehicle motorcycle, the type of opponent vehicle truck and pickup car, the age of the driver between 16-25, sub-district road status and front – side type of accident.","PeriodicalId":31196,"journal":{"name":"Lontar Komputer","volume":"56 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lontar Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/lkjiti.2023.v14.i01.p04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic accidents are still significant contributors to a fairly high death. Denpasar’s resort police record every traffic accident in the form of a daily report. The stored data can generate valuable information to improve policies and propagate better traffic practices. This research utilizes the classification technique with the XGBoost, random forest algorithm, and SMOTE method. The study shows that the SMOTE technique can increase the model's accuracy. Using the classification method with the two algorithms produces factors that affect the severity of traffic accident victims with feature importance. The feature importance obtained using the XGBoost model by counting the weight value for testing using the original dataset, the dataset for the type of two-wheeled vehicle, and the dataset of the kind of vehicle other than two-wheeled indicate that the variables influencing the severity of victims in road accidents are the time of accident between 00.00-06.00, the type of vehicle motorcycle, the type of opponent vehicle truck and pickup car, the age of the driver between 16-25, sub-district road status and front – side type of accident.
利用XGBoost算法分析交通事故受害者的严重程度
交通事故仍然是造成相当高死亡率的重要因素。登巴萨的度假村警察以每日报告的形式记录下每一起交通事故。存储的数据可以生成有价值的信息,以改进策略和推广更好的交通实践。本研究利用了XGBoost、随机森林算法和SMOTE方法的分类技术。研究表明,SMOTE技术可以提高模型的精度。利用两种算法的分类方法产生影响交通事故受害者严重程度的特征重要度因子。XGBoost模型通过对原始数据集、两轮车辆类型数据集和非两轮车辆类型数据集进行测试的权重值进行统计得到的特征重要度表明,影响道路交通事故受害者严重程度的变量为:事故时间在00.00-06.00之间,车辆类型为摩托车,对手车辆类型为卡车和皮卡车,驾驶员年龄在16-25岁之间,驾驶员年龄在16-25岁之间。街道道路状况及前方事故类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信