Innovative Video Classification Method Based on Deep Learning Approach

Q3 Engineering
V. Hemamalini, D. Jayasutha, V. R. Vinothini, R. Manjula Devi, Arun Kumar, E. Anitha
{"title":"Innovative Video Classification Method Based on Deep Learning Approach","authors":"V. Hemamalini, D. Jayasutha, V. R. Vinothini, R. Manjula Devi, Arun Kumar, E. Anitha","doi":"10.2174/0118722121248139231023111754","DOIUrl":null,"url":null,"abstract":"Background: The method includes: receiving a set of video data and labeling it into categories, segmenting the received videos into N segments, randomly selecting M frames for each video segment in the training phase, concatenating the video images into multi-channel images, and rolling. Methods: This work was developed in the Python programming language using the Keras library with Tensorflow as the back-end. The objective is to develop a network that presents performance compatible with the state of the art in terms of classifying videos according to the actions taken. Results: Given the hardware limitations, there is considerable distance between the implementation possibilities in this work and what is known as the state-of-the-art. Conclusion: Throughout the work, some aspects in which this limitation influenced the development are presented, but it is shown that this realization is feasible and that obtaining expressive results is possible. 98.6% accuracy is obtained in the UCF101 data set, compared to the 98 percentage points of the best result ever reported, using, however, considerably fewer resources. In addition, the importance of transfer learning in achieving expressive results as well as the different performances of each architecture are reviewed. Thus, this work may open doors to carry patent- based outcomes.","PeriodicalId":40022,"journal":{"name":"Recent Patents on Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722121248139231023111754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The method includes: receiving a set of video data and labeling it into categories, segmenting the received videos into N segments, randomly selecting M frames for each video segment in the training phase, concatenating the video images into multi-channel images, and rolling. Methods: This work was developed in the Python programming language using the Keras library with Tensorflow as the back-end. The objective is to develop a network that presents performance compatible with the state of the art in terms of classifying videos according to the actions taken. Results: Given the hardware limitations, there is considerable distance between the implementation possibilities in this work and what is known as the state-of-the-art. Conclusion: Throughout the work, some aspects in which this limitation influenced the development are presented, but it is shown that this realization is feasible and that obtaining expressive results is possible. 98.6% accuracy is obtained in the UCF101 data set, compared to the 98 percentage points of the best result ever reported, using, however, considerably fewer resources. In addition, the importance of transfer learning in achieving expressive results as well as the different performances of each architecture are reviewed. Thus, this work may open doors to carry patent- based outcomes.
基于深度学习方法的创新视频分类方法
背景:该方法包括:接收一组视频数据并对其进行分类,将接收到的视频分割为N段,在训练阶段为每个视频段随机选择M帧,将视频图像拼接成多通道图像,并进行滚动。方法:本工作采用Python编程语言,使用Keras库以Tensorflow为后端进行开发。目标是开发一个网络,该网络在根据所采取的动作对视频进行分类方面表现出与最新技术水平相兼容的性能。结果:考虑到硬件的限制,在这项工作中的实现可能性与所谓的最先进技术之间存在相当大的距离。结论:在整个工作中,提出了这种局限性影响发展的一些方面,但表明这种实现是可行的,并且获得表达性结果是可能的。在UCF101数据集中获得了98.6%的准确率,而迄今为止报告的最佳结果为98个百分点,然而使用的资源却少得多。此外,还回顾了迁移学习在实现表达结果中的重要性以及每种架构的不同性能。因此,这项工作可能为专利成果打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recent Patents on Engineering
Recent Patents on Engineering Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
100
期刊介绍: Recent Patents on Engineering publishes review articles by experts on recent patents in the major fields of engineering. A selection of important and recent patents on engineering is also included in the journal. The journal is essential reading for all researchers involved in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信