Differential Rotation in Convecting Spherical Shells with Non-Uniform Viscosity and Entropy Diffusivity

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2023-10-27 DOI:10.3390/fluids8110288
Parag Gupta, David MacTaggart, Radostin D. Simitev
{"title":"Differential Rotation in Convecting Spherical Shells with Non-Uniform Viscosity and Entropy Diffusivity","authors":"Parag Gupta, David MacTaggart, Radostin D. Simitev","doi":"10.3390/fluids8110288","DOIUrl":null,"url":null,"abstract":"Contemporary three-dimensional physics-based simulations of the solar convection zone disagree with observations. They feature differential rotation substantially different from the true rotation inferred by solar helioseismology and exhibit a conveyor belt of convective “Busse” columns not found in observations. To help unravel this so-called “convection conundrum”, we use a three-dimensional pseudospectral simulation code to investigate how radially non-uniform viscosity and entropy diffusivity affect differential rotation and convective flow patterns in density-stratified rotating spherical fluid shells. We find that radial non-uniformity in fluid properties enhances polar convection, which, in turn, induces non-negligible lateral entropy gradients that lead to large deviations from differential rotation geostrophy due to thermal wind balance. We report simulations wherein this mechanism maintains differential rotation patterns very similar to the true solar profile outside the tangent cylinder, although discrepancies remain at high latitudes. This is significant because differential rotation plays a key role in sustaining solar-like cyclic dipolar dynamos.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"57 9","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8110288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary three-dimensional physics-based simulations of the solar convection zone disagree with observations. They feature differential rotation substantially different from the true rotation inferred by solar helioseismology and exhibit a conveyor belt of convective “Busse” columns not found in observations. To help unravel this so-called “convection conundrum”, we use a three-dimensional pseudospectral simulation code to investigate how radially non-uniform viscosity and entropy diffusivity affect differential rotation and convective flow patterns in density-stratified rotating spherical fluid shells. We find that radial non-uniformity in fluid properties enhances polar convection, which, in turn, induces non-negligible lateral entropy gradients that lead to large deviations from differential rotation geostrophy due to thermal wind balance. We report simulations wherein this mechanism maintains differential rotation patterns very similar to the true solar profile outside the tangent cylinder, although discrepancies remain at high latitudes. This is significant because differential rotation plays a key role in sustaining solar-like cyclic dipolar dynamos.
具有非均匀粘性和熵扩散率的对流球壳的微分旋转
当代基于三维物理的太阳对流区模拟与观测结果不一致。它们具有与太阳日震学推断的真实旋转大不相同的微分旋转特征,并表现出观测中未发现的对流“Busse”柱传送带。为了帮助解开这个所谓的“对流难题”,我们使用三维伪谱模拟代码来研究径向非均匀粘度和熵扩散率如何影响密度分层旋转球形流体壳中的微分旋转和对流流动模式。我们发现,流体性质的径向非均匀性增强了极地对流,而极地对流反过来又引起不可忽略的横向熵梯度,导致由于热风平衡而导致的微分旋转地圈的大偏差。我们报告的模拟中,这种机制保持了与切线圆柱外的真实太阳剖面非常相似的微分旋转模式,尽管在高纬度地区仍然存在差异。这是很重要的,因为微分旋转在维持类似太阳的循环偶极发电机中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信