Fused mean structure learning in data integration with dependence

Pub Date : 2023-10-27 DOI:10.1002/cjs.11797
Emily C. Hector
{"title":"Fused mean structure learning in data integration with dependence","authors":"Emily C. Hector","doi":"10.1002/cjs.11797","DOIUrl":null,"url":null,"abstract":"<p>Motivated by image-on-scalar regression with data aggregated across multiple sites, we consider a setting in which multiple independent studies each collect multiple dependent vector outcomes, with potential mean model parameter homogeneity between studies and outcome vectors. To determine the validity of a joint analysis of these data sources, we must learn which of them share mean model parameters. We propose a new model fusion approach that delivers improved flexibility and statistical performance over existing methods. Our proposed approach specifies a quadratic inference function within each data source and fuses mean model parameter vectors in their entirety based on a new formulation of a pairwise fusion penalty. We establish theoretical properties of our estimator and propose an asymptotically equivalent weighted oracle meta-estimator that is more computationally efficient. Simulations and an application to the ABIDE neuroimaging consortium highlight the flexibility of the proposed approach. An <span>R</span> package is provided for ease of implementation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11797","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by image-on-scalar regression with data aggregated across multiple sites, we consider a setting in which multiple independent studies each collect multiple dependent vector outcomes, with potential mean model parameter homogeneity between studies and outcome vectors. To determine the validity of a joint analysis of these data sources, we must learn which of them share mean model parameters. We propose a new model fusion approach that delivers improved flexibility and statistical performance over existing methods. Our proposed approach specifies a quadratic inference function within each data source and fuses mean model parameter vectors in their entirety based on a new formulation of a pairwise fusion penalty. We establish theoretical properties of our estimator and propose an asymptotically equivalent weighted oracle meta-estimator that is more computationally efficient. Simulations and an application to the ABIDE neuroimaging consortium highlight the flexibility of the proposed approach. An R package is provided for ease of implementation.

Abstract Image

分享
查看原文
具有依赖性的数据整合中的融合均值结构学习
受图像-尺度回归与多站点数据汇总的启发,我们考虑了这样一种情况,即多项独立研究各自收集多个因变向量结果,而研究与结果向量之间可能存在平均模型参数同质性。为了确定对这些数据源进行联合分析的有效性,我们必须了解其中哪些数据源共享平均模型参数。我们提出了一种新的模型融合方法,与现有方法相比,这种方法具有更好的灵活性和统计性能。我们提出的方法在每个数据源中指定了一个二次推理函数,并根据成对融合罚则的新表述融合了整个平均模型参数向量。我们建立了估计器的理论属性,并提出了一种计算效率更高的渐进等效加权甲骨文元估计器。模拟和在 ABIDE 神经成像联盟中的应用凸显了所提方法的灵活性。为了便于实施,我们还提供了一个 R 软件包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信