K.E. Catledge, G.C. Montiel, M. Nichols, Jenifer S. Locke
{"title":"Effect of Anodic Polarization on the Susceptibility of AA6111 Automotive Sheet to Stress Corrosion Cracking","authors":"K.E. Catledge, G.C. Montiel, M. Nichols, Jenifer S. Locke","doi":"10.5006/4314","DOIUrl":null,"url":null,"abstract":"AA6xxx Al-Mg-Si-Cu alloys are increasingly used to meet lightweight objectives in automotive applications given their high strength-to-weight ratio. However, their use in conjunction with steels and carbon fiber-reinforced polymers in these applications will result in galvanic coupling that may be deleterious to the Al alloy. As such, the ability of anodic polarization to induce stress corrosion cracking (SCC) in AA6xxx, an alloy typically considered SCC-resistant, is explored. In this study, fracture mechanics-based testing under full immersion in 0.6 M NaCl was used to quantify the threshold stress intensity above which SCC can occur (KTH) and stage II SCC crack growth rate (da/dtII) as a function of applied potential at and above the freely corroding potential. Under freely corroding conditions and potentials applied within the range observed for the freely corroding potential, no SCC was observed as results matched those gathered in the air (i.e., KTH was equivalent to the measured fracture toughness). When applying potentials anodic to the freely corroding potential (greater than −706 mVSCE), a decrease in KTH and an increase in da/dtII was observed. Crack growth rates measured under anodic polarizations were slowed through the reapplication of the freely corroding potential. These data imply that galvanic coupling may have the capacity to induce severe SCC in AA6111.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"24 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5006/4314","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AA6xxx Al-Mg-Si-Cu alloys are increasingly used to meet lightweight objectives in automotive applications given their high strength-to-weight ratio. However, their use in conjunction with steels and carbon fiber-reinforced polymers in these applications will result in galvanic coupling that may be deleterious to the Al alloy. As such, the ability of anodic polarization to induce stress corrosion cracking (SCC) in AA6xxx, an alloy typically considered SCC-resistant, is explored. In this study, fracture mechanics-based testing under full immersion in 0.6 M NaCl was used to quantify the threshold stress intensity above which SCC can occur (KTH) and stage II SCC crack growth rate (da/dtII) as a function of applied potential at and above the freely corroding potential. Under freely corroding conditions and potentials applied within the range observed for the freely corroding potential, no SCC was observed as results matched those gathered in the air (i.e., KTH was equivalent to the measured fracture toughness). When applying potentials anodic to the freely corroding potential (greater than −706 mVSCE), a decrease in KTH and an increase in da/dtII was observed. Crack growth rates measured under anodic polarizations were slowed through the reapplication of the freely corroding potential. These data imply that galvanic coupling may have the capacity to induce severe SCC in AA6111.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.