Muhammad A Javed, Zeeshan Asghar, Hafiz Muhammad Atif, Mehreen Nisar
{"title":"A computational study of the calendering processes using Oldroyd 8-constant fluid with slip effects","authors":"Muhammad A Javed, Zeeshan Asghar, Hafiz Muhammad Atif, Mehreen Nisar","doi":"10.1177/09673911231202888","DOIUrl":null,"url":null,"abstract":"The analyses of the calendering processes using Oldroyd 8-constant fluid model with the non-linear slip condition effects are discussed in this paper. To model the flow equations for the study of calendering, we utilized the conservation of mass, momentum equations, and Oldroyd 8-constant model. The final equations are reduced into fourth order differential equations by utilizing lubrication approximation theory (LAT). MATLAB’s built-in function bvp4c is employed to calculate the stream function and the fluid velocity. Furthermore, pressure gradient, pressure, and mechanical quantities of calendering processes are obtained by fourth-order Runge-Kutta method. The effects of the slip and material parameters of Oldroyd 8-constant fluid on the physical quantities related to calendering are illustrated via graphical figures. The presence of slip is resistive to length of contract and pressure distribution. On the other hand the pressure showed the increasing trend with increase the value of material parameter ([Formula: see text]). The engineering quantity such as force function show decreasing with increase the values of the slip parameter K. As evident from the study, the material parameters play a crucial role in controlling the pressure, thereby influencing the final sheet thickness and separating force. With an increase in the material parameter [Formula: see text], both the sheet thickness and roll-separating force show a corresponding increase.","PeriodicalId":20322,"journal":{"name":"Polymers & Polymer Composites","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers & Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231202888","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The analyses of the calendering processes using Oldroyd 8-constant fluid model with the non-linear slip condition effects are discussed in this paper. To model the flow equations for the study of calendering, we utilized the conservation of mass, momentum equations, and Oldroyd 8-constant model. The final equations are reduced into fourth order differential equations by utilizing lubrication approximation theory (LAT). MATLAB’s built-in function bvp4c is employed to calculate the stream function and the fluid velocity. Furthermore, pressure gradient, pressure, and mechanical quantities of calendering processes are obtained by fourth-order Runge-Kutta method. The effects of the slip and material parameters of Oldroyd 8-constant fluid on the physical quantities related to calendering are illustrated via graphical figures. The presence of slip is resistive to length of contract and pressure distribution. On the other hand the pressure showed the increasing trend with increase the value of material parameter ([Formula: see text]). The engineering quantity such as force function show decreasing with increase the values of the slip parameter K. As evident from the study, the material parameters play a crucial role in controlling the pressure, thereby influencing the final sheet thickness and separating force. With an increase in the material parameter [Formula: see text], both the sheet thickness and roll-separating force show a corresponding increase.
期刊介绍:
Polymers & Polymer Composites provides a forum for the publication of expertly peer reviewed, international research into the following topics:
- Fibre reinforced and particulate filled plastics
- Engineering plastics
- Nanocomposites
- Polymers or polyblends intended for engineering use (including structural, load bearing electronic and electrical applications)
- Fibre reinforced and particulate filled plastics
- Structural adhesives
- Textile & wood fibres
- Biomaterials with a load bearing capacity, (including polymer based dental materials)