{"title":"Piezoelectricity and electrochemical effect of PVDF thermoplastic-based composites","authors":"Sehra Farooq, Nishant Ranjan","doi":"10.1080/2374068x.2023.2259142","DOIUrl":null,"url":null,"abstract":"ABSTRACTPolyvinylidene fluoride (PVDF) is a very high rendering polymer with a great performance of actuation and exceptionally good chemical and thermal resistance. The polymerisation of vinylidene difluoride produces PVDF, which is a highly non-reactive thermoplastic fluoropolymer. Due to its higher flexibility and piezoelectric properties, fabrications of PVDF-based nanocomposites are much in demand today and have found lots of applications in next-generation sensing objects such as promising piezoelectric energy harvesters (nanogenerators), energy storage devices, sensor systems, and biomedical devices. In this work, a brief review of the nature and characteristics of PVDF-based polymers has been discussed. Besides some manufacturing methods for nanocomposites, ways to improve PVDF phase crystallinity (α, β) and nanocomposite qualities are also reviewed.KEYWORDS: PVDFCNT (carbon nanotubes)MWCNT (multi-walled carbon nanotubes)SWCNT (single-walled carbon nanotube)BaTiO3 (barium titanium oxide) AcknowledgementsThe authors are highly thankful to Mechanical Engineering Department and University Centre for Research and Development, Chandigarh University, for technical support in this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":45198,"journal":{"name":"Advances in Materials and Processing Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials and Processing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2374068x.2023.2259142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTPolyvinylidene fluoride (PVDF) is a very high rendering polymer with a great performance of actuation and exceptionally good chemical and thermal resistance. The polymerisation of vinylidene difluoride produces PVDF, which is a highly non-reactive thermoplastic fluoropolymer. Due to its higher flexibility and piezoelectric properties, fabrications of PVDF-based nanocomposites are much in demand today and have found lots of applications in next-generation sensing objects such as promising piezoelectric energy harvesters (nanogenerators), energy storage devices, sensor systems, and biomedical devices. In this work, a brief review of the nature and characteristics of PVDF-based polymers has been discussed. Besides some manufacturing methods for nanocomposites, ways to improve PVDF phase crystallinity (α, β) and nanocomposite qualities are also reviewed.KEYWORDS: PVDFCNT (carbon nanotubes)MWCNT (multi-walled carbon nanotubes)SWCNT (single-walled carbon nanotube)BaTiO3 (barium titanium oxide) AcknowledgementsThe authors are highly thankful to Mechanical Engineering Department and University Centre for Research and Development, Chandigarh University, for technical support in this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).