An identity in the Bethe subalgebra of C[Sn]$\mathbb {C}[\mathfrak {S}_n]$

IF 1.5 1区 数学 Q1 MATHEMATICS
Kevin Purbhoo
{"title":"An identity in the Bethe subalgebra of C[Sn]$\\mathbb {C}[\\mathfrak {S}_n]$","authors":"Kevin Purbhoo","doi":"10.1112/plms.12560","DOIUrl":null,"url":null,"abstract":"Abstract As part of the proof of the Bethe ansatz conjecture for the Gaudin model for , Mukhin, Tarasov, and Varchenko described a correspondence between inverse Wronskians of polynomials and eigenspaces of the Gaudin Hamiltonians. Notably, this correspondence afforded the first proof of the Shapiro–Shapiro conjecture. In this paper, we give an identity in the group algebra of the symmetric group, which allows one to establish the correspondence directly, without using the Bethe ansatz.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"38 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12560","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract As part of the proof of the Bethe ansatz conjecture for the Gaudin model for , Mukhin, Tarasov, and Varchenko described a correspondence between inverse Wronskians of polynomials and eigenspaces of the Gaudin Hamiltonians. Notably, this correspondence afforded the first proof of the Shapiro–Shapiro conjecture. In this paper, we give an identity in the group algebra of the symmetric group, which allows one to establish the correspondence directly, without using the Bethe ansatz.
C[Sn]$\mathbb {C}[\mathfrak {S}_n]$的Bethe子代数中的恒等式
作为Gaudin模型的Bethe ansatz猜想证明的一部分,Mukhin、Tarasov和Varchenko描述了多项式的逆朗斯基矩阵与Gaudin哈密顿矩阵的特征空间之间的对应关系。值得注意的是,这种通信提供了夏皮罗-夏皮罗猜想的第一个证明。本文给出了对称群的群代数中的一个恒等式,该恒等式可以直接建立群的对应关系,而不需要使用贝特矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信