Novel learning for control of nonlinear spacecraft dynamics

Bo-Ruei Huang, Timothy Sands
{"title":"Novel learning for control of nonlinear spacecraft dynamics","authors":"Bo-Ruei Huang, Timothy Sands","doi":"10.59400/jam.v1i1.42","DOIUrl":null,"url":null,"abstract":"With accurate dynamic system parameters (embodied in self-awareness statements), a controller can provide precise signals for tracking desired state trajectories. If dynamic system parameters are initially guessed inaccurately, a learning method may be used to find the accurate parameters. In the deterministic artificial intelligence method, self-awareness statements are formed as mathematical expressions of the governing physics. When the nonlinear, coupled expressions are precisely parameterized as the product of known matrix components and unknown vectrix (i.e., an intermediate between a dyadic and a matrix in regression form) tracking errors may be projected onto the known matrix to update the unknown vectrix in an optimal form (in a two-norm sense). In this work, a modified learning method is proposed and proved to have global convergence of both state error and parameter estimation error. The modified learning method is compared with those in the prequels using simulation experiments of three-dimensional rigid body dynamic rotation motion. The achieved state error convergence using the modified approach is two magnitudes better than using the methods in the prequels.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i1.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With accurate dynamic system parameters (embodied in self-awareness statements), a controller can provide precise signals for tracking desired state trajectories. If dynamic system parameters are initially guessed inaccurately, a learning method may be used to find the accurate parameters. In the deterministic artificial intelligence method, self-awareness statements are formed as mathematical expressions of the governing physics. When the nonlinear, coupled expressions are precisely parameterized as the product of known matrix components and unknown vectrix (i.e., an intermediate between a dyadic and a matrix in regression form) tracking errors may be projected onto the known matrix to update the unknown vectrix in an optimal form (in a two-norm sense). In this work, a modified learning method is proposed and proved to have global convergence of both state error and parameter estimation error. The modified learning method is compared with those in the prequels using simulation experiments of three-dimensional rigid body dynamic rotation motion. The achieved state error convergence using the modified approach is two magnitudes better than using the methods in the prequels.
非线性航天器动力学控制的新学习方法
通过精确的动态系统参数(体现在自我意识声明中),控制器可以为跟踪期望的状态轨迹提供精确的信号。如果动态系统参数最初的猜测不准确,可以使用学习方法来找到准确的参数。在确定性人工智能方法中,自我意识陈述被形成为控制物理的数学表达式。当非线性耦合表达式被精确地参数化为已知矩阵分量和未知向量的乘积(即,介于二元和回归形式的矩阵之间)时,跟踪误差可以投射到已知矩阵上,以最优形式(在双范数意义上)更新未知向量。本文提出了一种改进的学习方法,并证明了该方法对状态误差和参数估计误差都具有全局收敛性。通过三维刚体动态旋转运动的仿真实验,将改进后的学习方法与前人的学习方法进行了比较。使用改进的方法获得的状态误差收敛性比使用前文中的方法好两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信