Sergey Golovastov, Grigory Bivol, Fyodor Kuleshov, Artem Elyanov, Victor Golub
{"title":"Flame Front Dynamics in Flow of Hydrogen-Air Mixture in a Channel with Sudden Expansion and Polyurethane Foam","authors":"Sergey Golovastov, Grigory Bivol, Fyodor Kuleshov, Artem Elyanov, Victor Golub","doi":"10.1007/s10494-023-00490-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents experimental investigations of the polyurethane foam influence on the combustion dynamics of hydrogen-air flames propagating in a channel with a sudden change in cross-section (i.e. expansion). The channel is open at both ends. Porous media of various lengths and pore size are considered. The porous inserts are placed downstream of the sudden expansion, inside the diagnostic section of dimensions 20 × 40 mm. A Schlieren visualization technique is used to monitor flame shape and propagation dynamics. Various equivalence ratios ranging from 0.3 to 1.0 are tested. The results show that depending on the equivalence ratio, porous length and pore size, the mixture can either propagate throughout the foam or be quenched. In propagating regime, it is found that the output velocity just behind the foam increases linearly with porous matrix length, indicating that the tortuous flow within the foam plays a significant role in the propagation of the flame. These results could be used both to increase the efficiency of gaseous combustion and to ensure the explosion safety of the gas equipment.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00490-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents experimental investigations of the polyurethane foam influence on the combustion dynamics of hydrogen-air flames propagating in a channel with a sudden change in cross-section (i.e. expansion). The channel is open at both ends. Porous media of various lengths and pore size are considered. The porous inserts are placed downstream of the sudden expansion, inside the diagnostic section of dimensions 20 × 40 mm. A Schlieren visualization technique is used to monitor flame shape and propagation dynamics. Various equivalence ratios ranging from 0.3 to 1.0 are tested. The results show that depending on the equivalence ratio, porous length and pore size, the mixture can either propagate throughout the foam or be quenched. In propagating regime, it is found that the output velocity just behind the foam increases linearly with porous matrix length, indicating that the tortuous flow within the foam plays a significant role in the propagation of the flame. These results could be used both to increase the efficiency of gaseous combustion and to ensure the explosion safety of the gas equipment.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.