Synthesis and properties of a nonionic water-based epoxy curing agent

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Tao Guo, Xu Youhui, Chen Ziran, Yang Fan, Wang Jiexue, Chang Bo, Chen Congdi, Han Tao
{"title":"Synthesis and properties of a nonionic water-based epoxy curing agent","authors":"Tao Guo, Xu Youhui, Chen Ziran, Yang Fan, Wang Jiexue, Chang Bo, Chen Congdi, Han Tao","doi":"10.1177/09673911231201049","DOIUrl":null,"url":null,"abstract":"Owing to the requirement for environmental protection, water-based coatings have become a significant trend in the development of coatings. The water-based epoxy curing agent has also become a hot research topic. In this study, a B-A-B epoxy compound with a long hydrophobic alkyl chain connected to the intermediate nitrogen atom was synthesized at both ends of a molecule using ethylene glycol diglycidyl ether and 3,4-dimethoxyaniline as raw materials. Subsequently, the epoxy compound was sealed with triethylenetetramine. A nonionic, water-based epoxy resin curing agent with amino groups at both ends of the molecule was prepared. The target product structure was confirmed by infrared spectroscopy (IR), Mass spectrum (MS), and Nuclear magnetic resonance hydrogen spectroscopy ( 1 H-NMR). Additionally, through three factors and three levels of orthogonal experimental design, the optimum experimental conditions were confirmed, the optimum yield was 82.83%. The thermogravimetric analysis (TGA) indicated that the monomer exhibited a significant weight loss in the temperature range of 320–450°C. The pencil hardness, flexibility, and impact resistance of the waterborne epoxy resin coating film prepared by the non-ionic water-based epoxy curing agent reached or exceeded those of similar products at China and foreign countries.","PeriodicalId":20322,"journal":{"name":"Polymers & Polymer Composites","volume":"8 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers & Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231201049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the requirement for environmental protection, water-based coatings have become a significant trend in the development of coatings. The water-based epoxy curing agent has also become a hot research topic. In this study, a B-A-B epoxy compound with a long hydrophobic alkyl chain connected to the intermediate nitrogen atom was synthesized at both ends of a molecule using ethylene glycol diglycidyl ether and 3,4-dimethoxyaniline as raw materials. Subsequently, the epoxy compound was sealed with triethylenetetramine. A nonionic, water-based epoxy resin curing agent with amino groups at both ends of the molecule was prepared. The target product structure was confirmed by infrared spectroscopy (IR), Mass spectrum (MS), and Nuclear magnetic resonance hydrogen spectroscopy ( 1 H-NMR). Additionally, through three factors and three levels of orthogonal experimental design, the optimum experimental conditions were confirmed, the optimum yield was 82.83%. The thermogravimetric analysis (TGA) indicated that the monomer exhibited a significant weight loss in the temperature range of 320–450°C. The pencil hardness, flexibility, and impact resistance of the waterborne epoxy resin coating film prepared by the non-ionic water-based epoxy curing agent reached or exceeded those of similar products at China and foreign countries.
一种非离子型水基环氧固化剂的合成与性能
由于对环境保护的要求,水性涂料已成为涂料发展的一个重要趋势。水性环氧固化剂也成为研究的热点。本研究以乙二醇二甘油酯醚和3,4-二甲氧基苯胺为原料,在分子两端合成了一种B-A-B环氧化合物,该化合物具有与中间氮原子相连的长疏水性烷基链。随后,环氧化合物用三乙烯四胺密封。制备了一种分子两端都有氨基的非离子型水性环氧树脂固化剂。通过红外光谱(IR)、质谱(MS)和核磁共振氢谱(1h - nmr)对目标产物结构进行了确证。通过三因素三水平的正交试验设计,确定了最佳实验条件,最佳得率为82.83%。热重分析(TGA)表明,在320 ~ 450℃的温度范围内,单体出现了明显的失重。非离子型水基环氧固化剂制备的水性环氧树脂涂膜的铅笔硬度、柔韧性、抗冲击性均达到或超过国内外同类产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers & Polymer Composites
Polymers & Polymer Composites 工程技术-材料科学:表征与测试
CiteScore
4.30
自引率
9.50%
发文量
90
审稿时长
5.7 months
期刊介绍: Polymers & Polymer Composites provides a forum for the publication of expertly peer reviewed, international research into the following topics: - Fibre reinforced and particulate filled plastics - Engineering plastics - Nanocomposites - Polymers or polyblends intended for engineering use (including structural, load bearing electronic and electrical applications) - Fibre reinforced and particulate filled plastics - Structural adhesives - Textile & wood fibres - Biomaterials with a load bearing capacity, (including polymer based dental materials)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信