On extended $ k $-generalized Mittag-Leffler function and its properties

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shilpi Jain, B.B. Jaimini, Meenu Buri, Praveen Agarwal
{"title":"On extended $ k $-generalized Mittag-Leffler function and its properties","authors":"Shilpi Jain, B.B. Jaimini, Meenu Buri, Praveen Agarwal","doi":"10.3934/mfc.2023041","DOIUrl":null,"url":null,"abstract":"In this current paper, we are using the concept of extension of the beta function to define an extended $ k $-generalized Mittag-Leffler function (GMLf) $ E_{k, l, m}^{\\rho, \\sigma;c}(x;p) $. There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended $ k $-GMLf from the extended $ k $-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"9 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2023041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this current paper, we are using the concept of extension of the beta function to define an extended $ k $-generalized Mittag-Leffler function (GMLf) $ E_{k, l, m}^{\rho, \sigma;c}(x;p) $. There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended $ k $-GMLf from the extended $ k $-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results.
扩展k -广义Mittag-Leffler函数及其性质
在本文中,我们使用beta函数扩展的概念来定义一个扩展$ k $ -广义Mittag-Leffler函数(GMLf) $ E_{k, l, m}^{\rho, \sigma;c}(x;p) $。本文分四节介绍了上述函数的一些性质,如导数、积分表示和积分变换。并建立了一些递推关系。我们还从广义MLf的扩展的$ k $ -Riemann-Liouville (R-L)分数阶导数中导出了扩展的$ k $ -GMLf。以前许多研究者研究过的许多结果,也可以作为我们研究结果的特殊情况推导出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信