Diagnostic of the Lévy area for geophysical flow models in view of defining high order stochastic discrete-time schemes

IF 1.7 Q2 MATHEMATICS, APPLIED
Pierre-Marie Boulvard, Etienne Mémin
{"title":"Diagnostic of the Lévy area for geophysical flow models in view of defining high order stochastic discrete-time schemes","authors":"Pierre-Marie Boulvard, Etienne Mémin","doi":"10.3934/fods.2023011","DOIUrl":null,"url":null,"abstract":"In this paper we characterize numerically through two criteria the Lévy area related to unresolved fluctuation velocities associated to a stochastic coarse-scale representation of geophysical fluid flow dynamics. We study in particular whether or not the process associated to the random unresolved velocity components exhibits a Lévy area corresponding to a Wiener process, and if the law of this process can reasonably be approached by a centered Dirac measure. This exploration enables us to answer positively to a conjecture made for the constitution of high-order discrete time evolution schemes for stochastic representation defined from stochastic transport.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"14 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2023011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we characterize numerically through two criteria the Lévy area related to unresolved fluctuation velocities associated to a stochastic coarse-scale representation of geophysical fluid flow dynamics. We study in particular whether or not the process associated to the random unresolved velocity components exhibits a Lévy area corresponding to a Wiener process, and if the law of this process can reasonably be approached by a centered Dirac measure. This exploration enables us to answer positively to a conjecture made for the constitution of high-order discrete time evolution schemes for stochastic representation defined from stochastic transport.
基于高阶随机离散时间格式的地球物理流动模型lsamvy区域诊断
在本文中,我们通过两个标准对与地球物理流体流动动力学随机粗尺度表示相关的未解决的波动速度有关的lsamvy面积进行了数值表征。我们特别研究了与随机未解析速度分量相关的过程是否表现出与Wiener过程相对应的lsamvy区域,以及该过程的规律是否可以通过中心狄拉克测量合理地接近。这一探索使我们能够积极地回答由随机输运定义的随机表示的高阶离散时间演化方案的构造的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信