{"title":"Evaluation of Helicopter Ship Deck Landing Control Laws in Piloted Simulations","authors":"Arti Kalra, Alexander Štrbac, Malte-Jörn Maibach","doi":"10.4050/jahs.69.012002","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation and the evaluation of newly designed helicopter ship deck landing control modes in a piloted simulation study. The ship deck landing modes are embedded in a model-following controller architecture. The employed control design is a complete model-following control system, which imposes the desired command model dynamics on the controlled helicopter. Different command types combined with various hold functions are implemented to make the task easier for the pilots. Three basic command modes and three advanced command modes, one without ship communication and two with ship communication, are implemented. A piloted simulation study was performed in a simulator to evaluate and compare the implemented control modes within a complete maritime scenario design. The evaluation of control modes is based on the success of helicopter ship deck landings which is assessed by a quantitative as well as a qualitative assessment. Simulation results demonstrate that the advanced command modes improved the task performance as well as reduced the pilot workload extensively in comparison to the basic command modes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.69.012002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the implementation and the evaluation of newly designed helicopter ship deck landing control modes in a piloted simulation study. The ship deck landing modes are embedded in a model-following controller architecture. The employed control design is a complete model-following control system, which imposes the desired command model dynamics on the controlled helicopter. Different command types combined with various hold functions are implemented to make the task easier for the pilots. Three basic command modes and three advanced command modes, one without ship communication and two with ship communication, are implemented. A piloted simulation study was performed in a simulator to evaluate and compare the implemented control modes within a complete maritime scenario design. The evaluation of control modes is based on the success of helicopter ship deck landings which is assessed by a quantitative as well as a qualitative assessment. Simulation results demonstrate that the advanced command modes improved the task performance as well as reduced the pilot workload extensively in comparison to the basic command modes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.