Supersolutions to nonautonomous Choquard equations in general domains

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Asadollah Aghajani, Juha Kinnunen
{"title":"Supersolutions to nonautonomous Choquard equations in general domains","authors":"Asadollah Aghajani, Juha Kinnunen","doi":"10.1515/anona-2023-0107","DOIUrl":null,"url":null,"abstract":"Abstract We consider the nonlocal quasilinear elliptic problem: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>H</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:math> -{\\Delta }_{m}u\\left(x)=H\\left(x){(\\left({I}_{\\alpha }* \\left(Qf\\left(u)))\\left(x))}^{\\beta }g\\left(u\\left(x))\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:math> \\Omega is a smooth domain in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>β</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> \\beta \\ge 0 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> </m:math> {I}_{\\alpha } , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mi>N</m:mi> </m:math> 0\\lt \\alpha \\lt N , stands for the Riesz potential, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f,g:\\left[0,a)\\to \\left[0,\\infty ) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:math> 0\\lt a\\le \\infty , are monotone nondecreasing functions with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> f\\left(s),g\\left(s)\\gt 0 for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> s\\gt 0 , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>Q</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> H,Q:\\Omega \\to {\\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g such as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {e}^{u},{\\left(1+u)}^{p} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {\\left(1-u)}^{-p} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:math> p\\gt 1 . We also discuss the Liouville-type results in unbounded domains.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the nonlocal quasilinear elliptic problem: Δ m u ( x ) = H ( x ) ( ( I α * ( Q f ( u ) ) ) ( x ) ) β g ( u ( x ) ) in Ω , -{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega , where Ω \Omega is a smooth domain in R N {{\mathbb{R}}}^{N} , β 0 \beta \ge 0 , I α {I}_{\alpha } , 0 < α < N 0\lt \alpha \lt N , stands for the Riesz potential, f , g : [ 0 , a ) [ 0 , ) f,g:\left[0,a)\to \left[0,\infty ) , 0 < a 0\lt a\le \infty , are monotone nondecreasing functions with f ( s ) , g ( s ) > 0 f\left(s),g\left(s)\gt 0 for s > 0 s\gt 0 , and H , Q : Ω R H,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities f f and g g such as e u , ( 1 + u ) p {e}^{u},{\left(1+u)}^{p} , and ( 1 u ) p {\left(1-u)}^{-p} , p > 1 p\gt 1 . We also discuss the Liouville-type results in unbounded domains.
一般定义域非自治Choquard方程的超解
考虑非局部拟线性椭圆型问题:−Δm u (x) = H (x ) ( ( 我α* (Q f (u ) ) ) ( x ) ) βg (u (x ) ) 在Ω-{\三角洲}_ {m} u \左H (x) = \左(x){(左\({我}_{\α}* \左(Qf \左(u))) \左(x))} ^{\β}g \离开(u \左(x)) \水平间距{1.0 em} \水平间距{0.1 em}{在}\ \文本水平间距{0.1 em} \水平间距{0.33 em} \ω,Ω\ω是一个平滑的域在R N {{\ mathbb {R}}} ^ {N},β≥0 \β\通用电气0,我α{我}_{\α},0 & lt;α& lt;N 0\lt \alpha \lt N,表示Riesz势,f,g: [0,a)→[0,∞)f,g:\left[0,a)\到\left[0,\infty), 0 <A≤∞0\lt A \le \ inty,为单调非降函数,具有f (s), g (s) >0 f\left(s),g\left(s)\gt 0 for s >0 s\gt 0,和H,Q: Ω→R H,Q:\Omega \到{\mathbb{R}}是非负可测函数。我们给出了正弱超解的明确定量点估计。作为一个应用,我们得到了有关非线性特征值问题在有界域上的极值参数的界,这些非线性特征值问题包括eu, (1+u) p {e}^{u},{\left(1+u)}^{p}和(1-u) -p {\left(1-u)}^{p}, p >1 p\gt 1。我们还讨论了无界域上的liouville型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信