Supersolutions to nonautonomous Choquard equations in general domains
IF 4.3
3区 材料科学
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Asadollah Aghajani, Juha Kinnunen
求助PDF
{"title":"Supersolutions to nonautonomous Choquard equations in general domains","authors":"Asadollah Aghajani, Juha Kinnunen","doi":"10.1515/anona-2023-0107","DOIUrl":null,"url":null,"abstract":"Abstract We consider the nonlocal quasilinear elliptic problem: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>H</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:math> -{\\Delta }_{m}u\\left(x)=H\\left(x){(\\left({I}_{\\alpha }* \\left(Qf\\left(u)))\\left(x))}^{\\beta }g\\left(u\\left(x))\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:math> \\Omega is a smooth domain in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>β</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> \\beta \\ge 0 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> </m:math> {I}_{\\alpha } , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mi>N</m:mi> </m:math> 0\\lt \\alpha \\lt N , stands for the Riesz potential, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f,g:\\left[0,a)\\to \\left[0,\\infty ) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:math> 0\\lt a\\le \\infty , are monotone nondecreasing functions with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> f\\left(s),g\\left(s)\\gt 0 for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> s\\gt 0 , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>Q</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> H,Q:\\Omega \\to {\\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g such as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {e}^{u},{\\left(1+u)}^{p} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {\\left(1-u)}^{-p} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:math> p\\gt 1 . We also discuss the Liouville-type results in unbounded domains.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Abstract We consider the nonlocal quasilinear elliptic problem: − Δ m u ( x ) = H ( x ) ( ( I α * ( Q f ( u ) ) ) ( x ) ) β g ( u ( x ) ) in Ω , -{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega , where Ω \Omega is a smooth domain in R N {{\mathbb{R}}}^{N} , β ≥ 0 \beta \ge 0 , I α {I}_{\alpha } , 0 < α < N 0\lt \alpha \lt N , stands for the Riesz potential, f , g : [ 0 , a ) → [ 0 , ∞ ) f,g:\left[0,a)\to \left[0,\infty ) , 0 < a ≤ ∞ 0\lt a\le \infty , are monotone nondecreasing functions with f ( s ) , g ( s ) > 0 f\left(s),g\left(s)\gt 0 for s > 0 s\gt 0 , and H , Q : Ω → R H,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities f f and g g such as e u , ( 1 + u ) p {e}^{u},{\left(1+u)}^{p} , and ( 1 − u ) − p {\left(1-u)}^{-p} , p > 1 p\gt 1 . We also discuss the Liouville-type results in unbounded domains.
一般定义域非自治Choquard方程的超解
考虑非局部拟线性椭圆型问题:−Δm u (x) = H (x ) ( ( 我α* (Q f (u ) ) ) ( x ) ) βg (u (x ) ) 在Ω-{\三角洲}_ {m} u \左H (x) = \左(x){(左\({我}_{\α}* \左(Qf \左(u))) \左(x))} ^{\β}g \离开(u \左(x)) \水平间距{1.0 em} \水平间距{0.1 em}{在}\ \文本水平间距{0.1 em} \水平间距{0.33 em} \ω,Ω\ω是一个平滑的域在R N {{\ mathbb {R}}} ^ {N},β≥0 \β\通用电气0,我α{我}_{\α},0 & lt;α& lt;N 0\lt \alpha \lt N,表示Riesz势,f,g: [0,a)→[0,∞)f,g:\left[0,a)\到\left[0,\infty), 0 <A≤∞0\lt A \le \ inty,为单调非降函数,具有f (s), g (s) >0 f\left(s),g\left(s)\gt 0 for s >0 s\gt 0,和H,Q: Ω→R H,Q:\Omega \到{\mathbb{R}}是非负可测函数。我们给出了正弱超解的明确定量点估计。作为一个应用,我们得到了有关非线性特征值问题在有界域上的极值参数的界,这些非线性特征值问题包括eu, (1+u) p {e}^{u},{\left(1+u)}^{p}和(1-u) -p {\left(1-u)}^{p}, p >1 p\gt 1。我们还讨论了无界域上的liouville型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。