A robust semi-analytical approach to study fractional coupled Sokolov Wilson system in shallow water waves

Q3 Mathematics
Yogeshwari F. Patel, Jayesh M. Dhodiya
{"title":"A robust semi-analytical approach to study fractional coupled Sokolov Wilson system in shallow water waves","authors":"Yogeshwari F. Patel, Jayesh M. Dhodiya","doi":"10.1504/ijmmno.2023.134155","DOIUrl":null,"url":null,"abstract":"In this paper, a semi-analytical approach namely, modified differential transform method is suggested to investigate coupled fractional nonlinear Drinfeld-Sokolov-Wilson equations (CFDSWE) that arise in shallow water flow models. The Caputo sense is used to characterise the fractional derivative. The solution of coupled fractional nonlinear Drinfeld-Sokolov-Wilson equations is obtained for two different cases. The obtained solution shows an excellent agreement with the exact solution for classical order which shows the effectiveness and reliability of the method. The results show that the fractional modified differential transform method is a promising tool to find the analytical solution of highly nonlinear fractional PDEs. The computational work is done in the MATLAB software package.","PeriodicalId":38699,"journal":{"name":"International Journal of Mathematical Modelling and Numerical Optimisation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Modelling and Numerical Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2023.134155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a semi-analytical approach namely, modified differential transform method is suggested to investigate coupled fractional nonlinear Drinfeld-Sokolov-Wilson equations (CFDSWE) that arise in shallow water flow models. The Caputo sense is used to characterise the fractional derivative. The solution of coupled fractional nonlinear Drinfeld-Sokolov-Wilson equations is obtained for two different cases. The obtained solution shows an excellent agreement with the exact solution for classical order which shows the effectiveness and reliability of the method. The results show that the fractional modified differential transform method is a promising tool to find the analytical solution of highly nonlinear fractional PDEs. The computational work is done in the MATLAB software package.
浅水波中分数阶耦合Sokolov Wilson系统的鲁棒半解析方法
本文提出了一种半解析方法,即改进的微分变换方法来研究浅水流动模型中出现的耦合分数阶非线性Drinfeld-Sokolov-Wilson方程(CFDSWE)。卡普托意义用于描述分数阶导数。得到了两种不同情况下分数阶非线性耦合Drinfeld-Sokolov-Wilson方程的解。得到的解与经典阶的精确解具有很好的一致性,表明了该方法的有效性和可靠性。结果表明,分数阶修正微分变换方法是求解高度非线性分数阶偏微分方程解析解的一种很有前途的工具。计算工作在MATLAB软件包中完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信