Raúl M. Falcón, Venkitachalam Aparna, Nagaraj Mohanapriya
{"title":"Optimal secret share distribution in degree splitting communication networks","authors":"Raúl M. Falcón, Venkitachalam Aparna, Nagaraj Mohanapriya","doi":"10.3934/nhm.2023075","DOIUrl":null,"url":null,"abstract":"<abstract><p>Dynamic coloring has recently emerged as a valuable tool to optimize cryptographic protocols based on secret sharing, which enforce data security in communication networks and have significant importance in both online storage and cloud computing. This type of graph labeling enables the dealer to distribute secret shares among the nodes of a communication network so that everybody can recover the secret after a minimum number of rounds of communication. This paper delves into this topic by dealing with the dynamic coloring problem for degree splitting graphs. The topological structure of the latter enables the dealer to avoid dishonesty by adding control nodes that supervise all those participants with a similar influence in the network. More precisely, we solve the dynamic coloring problem for degree splitting graphs of any regular graph. The irregular case is partially solved by establishing a lower bound for the corresponding dynamic chromatic number. As illustrative examples, we solve the dynamic coloring problem for the degree splitting graphs of cycles, cocktail, book, comb, fan, jellyfish, windmill and barbell graphs.</p></abstract>","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/nhm.2023075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic coloring has recently emerged as a valuable tool to optimize cryptographic protocols based on secret sharing, which enforce data security in communication networks and have significant importance in both online storage and cloud computing. This type of graph labeling enables the dealer to distribute secret shares among the nodes of a communication network so that everybody can recover the secret after a minimum number of rounds of communication. This paper delves into this topic by dealing with the dynamic coloring problem for degree splitting graphs. The topological structure of the latter enables the dealer to avoid dishonesty by adding control nodes that supervise all those participants with a similar influence in the network. More precisely, we solve the dynamic coloring problem for degree splitting graphs of any regular graph. The irregular case is partially solved by establishing a lower bound for the corresponding dynamic chromatic number. As illustrative examples, we solve the dynamic coloring problem for the degree splitting graphs of cycles, cocktail, book, comb, fan, jellyfish, windmill and barbell graphs.
期刊介绍:
NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation.
NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.