Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Huaian Diao, Xiaoxu Fei, Hongyu Liu, Ke Yang
{"title":"Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities","authors":"Huaian Diao, Xiaoxu Fei, Hongyu Liu, Ke Yang","doi":"10.3934/ipi.2023043","DOIUrl":null,"url":null,"abstract":"In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the Hölder regularity or a regularity condition in terms of Herglotz approximation.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"39 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2023043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the Hölder regularity or a regularity condition in terms of Herglotz approximation.
具有圆锥奇点的电磁逆问题的可见性、不可见性和唯一恢复
本文研究了两种情况下的时谐电磁散射,即异常散射体是一对电磁源或非均匀介质,两者都有紧致支撑。我们主要关注的是通过单次远场测量恢复散射体的支持而不依赖其物理内容的几何逆散射问题。假设散射体的支撑(局部)具有锥形奇点。当不可见/透明发生时,我们建立了散射体的局部特征,表明其特征参数必须在圆锥形点附近局部消失。利用这一特性,我们建立了上述反散射问题的几个局部和全局唯一性结果,表明可见性必须意味着唯一恢复。在此过程中,我们还利用Herglotz近似建立了在Hölder正则性或正则性条件下,围绕圆锥形点的电磁传输本征函数的局部消失性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信