A three-stage random forest integrating fuzzy matrix method in low frequency oscillation classification of power system

IF 0.5 4区 农林科学 Q4 FORESTRY
Sylwan Pub Date : 2023-01-01 DOI:10.59879/rfiji
Miao Yu, Shuwei Yang, Fang Shi, Sizhuo Gong, Di Yang, Zihao Lin
{"title":"A three-stage random forest integrating fuzzy matrix method in low frequency oscillation classification of power system","authors":"Miao Yu, Shuwei Yang, Fang Shi, Sizhuo Gong, Di Yang, Zihao Lin","doi":"10.59879/rfiji","DOIUrl":null,"url":null,"abstract":"In view of the problems that the early warning process of low frequency oscillation in power system is vulnerable to the influence of complex grid environment. The classification speed is slow due to the large amount of processing data in the classification process. A three-stage random forest based on a fuzzy matrix method is proposed in this paper to improve the accuracy and the classification speed of low frequency oscillation early warning in power system. Firstly, the fuzzy matrix comprehensive evaluation is carried out by PMU data, and the evaluation score S will be obtained to determine whether low-frequency oscillation occurs and makes a quick warning. Then, the data is processed by Synchronous Wavelet Transform (SWT), and the damping ratio and attenuation factor of the data are obtained. Furthermore, Random Forest 2(RF 2) and RF 3 are used to judge the type of low frequency oscillation. Finally, simulation results show that the comprehensive fuzzy matrix improves the accuracy of low-frequency oscillation early warning, and the three-stage classification method reduces the amount of data processing and improves the classification speed and stability.","PeriodicalId":49454,"journal":{"name":"Sylwan","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sylwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59879/rfiji","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the problems that the early warning process of low frequency oscillation in power system is vulnerable to the influence of complex grid environment. The classification speed is slow due to the large amount of processing data in the classification process. A three-stage random forest based on a fuzzy matrix method is proposed in this paper to improve the accuracy and the classification speed of low frequency oscillation early warning in power system. Firstly, the fuzzy matrix comprehensive evaluation is carried out by PMU data, and the evaluation score S will be obtained to determine whether low-frequency oscillation occurs and makes a quick warning. Then, the data is processed by Synchronous Wavelet Transform (SWT), and the damping ratio and attenuation factor of the data are obtained. Furthermore, Random Forest 2(RF 2) and RF 3 are used to judge the type of low frequency oscillation. Finally, simulation results show that the comprehensive fuzzy matrix improves the accuracy of low-frequency oscillation early warning, and the three-stage classification method reduces the amount of data processing and improves the classification speed and stability.
三阶段随机森林积分模糊矩阵法在电力系统低频振荡分类中的应用
针对电力系统低频振荡预警过程易受复杂电网环境影响的问题。由于分类过程中处理的数据量大,分类速度较慢。为了提高电力系统低频振荡预警的准确率和分类速度,提出了一种基于模糊矩阵的三级随机森林方法。首先,利用PMU数据进行模糊矩阵综合评价,得到评价分数S,判断是否发生低频振荡并快速预警。然后,对数据进行同步小波变换(SWT)处理,得到数据的阻尼比和衰减系数。利用随机森林2和随机森林3来判断低频振荡的类型。最后,仿真结果表明,综合模糊矩阵提高了低频振荡预警的精度,三阶段分类方法减少了数据处理量,提高了分类速度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sylwan
Sylwan 农林科学-林学
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
1 months
期刊介绍: SYLWAN jest najstarszym w Polsce leśnym czasopismem naukowym, jednym z pierwszych na świecie. Został założony w 1820 roku w Warszawie. Przyczynił się w znakomity sposób do rozwoju polskiego leśnictwa, służąc postępowi, upowszechnieniu wiedzy leśnej oraz rozwojowi nauki.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信