Lightweight and Scale Adaptive Efficient backbone Network for Recognition

IF 0.5 4区 农林科学 Q4 FORESTRY
Sylwan Pub Date : 2023-01-01 DOI:10.59879/ny20e
Chao Wang, Kaijie Zhang, Xiaoyong Yu, Xianpeng Xiong, Aihua Zheng
{"title":"Lightweight and Scale Adaptive Efficient backbone Network for Recognition","authors":"Chao Wang, Kaijie Zhang, Xiaoyong Yu, Xianpeng Xiong, Aihua Zheng","doi":"10.59879/ny20e","DOIUrl":null,"url":null,"abstract":"Vehicle refinement recognition related technology research is widely used in the field of mine monitoring and management systems, road traffic command and control, etc. As researchers develop and implement the target recognition technology system based on deep learning algorithms, designing a target recognition algorithm with excellent performance is a research priority within the field of vehicle monitoring. In this paper, we propose an Efficient Net algorithm based recognition method for vehicle front-end and vehicle rear-end recognition to address the shortcomings of the current methods used for vehicle front-end and vehicle rear-end recognition, and verify the reliability of the algorithm using experiments. Algorithm systematically investigates model scaling, the backbone network makes extensive use of the MBConv structure to extract the feature maps, which cuts short the time required for model training, and the structure introduces the SE module to perform global averaging pooling operations in the channel dimension direction to enhance model performance, so that the network has the dual advantages of network model size and recognition accuracy at the same time. Based on the above findings, we improve the inverse residual module of the backbone feature extraction network EfficientNet by introducing the coordinate attention mechanism (CA) to average the spatial feature information in X-axis and Y-axis dimensions respectively, with the feature layer size and number of channels unchanged, and change the residual edge to shorten the input and output of high-dimensional channels to improve the accuracy of model feature extraction. Meanwhile, this paper introduces a depth-separable convolutional neural network and agent-normalized activation in the mobile flip-flop convolutional module to offset the two different dimensions of X-axis and Y-axis between each convolutional layer but the two main sources of non-normalization, so as to achieve the improvement of the target detection rate and accuracy.","PeriodicalId":49454,"journal":{"name":"Sylwan","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sylwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59879/ny20e","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle refinement recognition related technology research is widely used in the field of mine monitoring and management systems, road traffic command and control, etc. As researchers develop and implement the target recognition technology system based on deep learning algorithms, designing a target recognition algorithm with excellent performance is a research priority within the field of vehicle monitoring. In this paper, we propose an Efficient Net algorithm based recognition method for vehicle front-end and vehicle rear-end recognition to address the shortcomings of the current methods used for vehicle front-end and vehicle rear-end recognition, and verify the reliability of the algorithm using experiments. Algorithm systematically investigates model scaling, the backbone network makes extensive use of the MBConv structure to extract the feature maps, which cuts short the time required for model training, and the structure introduces the SE module to perform global averaging pooling operations in the channel dimension direction to enhance model performance, so that the network has the dual advantages of network model size and recognition accuracy at the same time. Based on the above findings, we improve the inverse residual module of the backbone feature extraction network EfficientNet by introducing the coordinate attention mechanism (CA) to average the spatial feature information in X-axis and Y-axis dimensions respectively, with the feature layer size and number of channels unchanged, and change the residual edge to shorten the input and output of high-dimensional channels to improve the accuracy of model feature extraction. Meanwhile, this paper introduces a depth-separable convolutional neural network and agent-normalized activation in the mobile flip-flop convolutional module to offset the two different dimensions of X-axis and Y-axis between each convolutional layer but the two main sources of non-normalization, so as to achieve the improvement of the target detection rate and accuracy.
用于识别的轻量级、规模化自适应高效骨干网络
车辆精细化识别相关技术的研究被广泛应用于矿山监控管理系统、道路交通指挥控制等领域。随着基于深度学习算法的目标识别技术系统的开发和实现,设计一种性能优异的目标识别算法是车辆监控领域的研究重点。本文针对当前车辆前、后识别方法的不足,提出了一种基于Efficient Net算法的车辆前、后识别方法,并通过实验验证了算法的可靠性。算法系统地研究了模型缩放,骨主干网络大量使用MBConv结构提取特征映射,缩短了模型训练所需的时间,该结构引入SE模块在通道维数方向上进行全局平均池化操作,增强了模型性能,使网络同时具有网络模型规模和识别精度的双重优势。基于以上发现,我们改进了骨干特征提取网络EfficientNet的残差逆模块,在特征层大小和通道数不变的情况下,引入坐标注意机制(CA),分别对x轴和y轴维度的空间特征信息进行平均,并改变残差边缘,缩短高维通道的输入和输出,以提高模型特征提取的精度。同时,本文在移动触发器卷积模块中引入深度可分卷积神经网络和agent归一化激活,以抵消每个卷积层之间x轴和y轴两个不同维度但非归一化的两个主要来源,从而达到提高目标检测率和准确率的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sylwan
Sylwan 农林科学-林学
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
1 months
期刊介绍: SYLWAN jest najstarszym w Polsce leśnym czasopismem naukowym, jednym z pierwszych na świecie. Został założony w 1820 roku w Warszawie. Przyczynił się w znakomity sposób do rozwoju polskiego leśnictwa, służąc postępowi, upowszechnieniu wiedzy leśnej oraz rozwojowi nauki.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信