Neural networks: Studying their decision-making rules

Q4 Computer Science
Anatolii Petrenko, Ilya Vokhranov
{"title":"Neural networks: Studying their decision-making rules","authors":"Anatolii Petrenko, Ilya Vokhranov","doi":"10.20535/srit.2308-8893.2023.2.06","DOIUrl":null,"url":null,"abstract":"The question of a better understanding of the behavior of neural networks is quite relevant, especially in industries with a high level of risks. To solve this problem, the possibilities of the new DeepRED decomposition algorithm, capable of extracting decision-making rules by deep neural networks with several hidden layers, are explored in the paper. The study of the DeepRED algorithm was carried out on the example of extracting the rules of an experimental neural network during the classification of images of the MNIST database of handwritten digits, which made it possible to reveal a number of limitations of the DeepRED algorithm.","PeriodicalId":30502,"journal":{"name":"Sistemni Doslidzena ta Informacijni Tehnologii","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemni Doslidzena ta Informacijni Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2023.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The question of a better understanding of the behavior of neural networks is quite relevant, especially in industries with a high level of risks. To solve this problem, the possibilities of the new DeepRED decomposition algorithm, capable of extracting decision-making rules by deep neural networks with several hidden layers, are explored in the paper. The study of the DeepRED algorithm was carried out on the example of extracting the rules of an experimental neural network during the classification of images of the MNIST database of handwritten digits, which made it possible to reveal a number of limitations of the DeepRED algorithm.
神经网络:研究其决策规则
更好地理解神经网络的行为是一个非常重要的问题,特别是在高风险的行业。为了解决这一问题,本文探讨了新的DeepRED分解算法的可能性,该算法能够通过具有多个隐藏层的深度神经网络提取决策规则。以MNIST手写体数字数据库图像分类过程中提取实验神经网络规则为例,对DeepRED算法进行了研究,揭示了DeepRED算法的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sistemni Doslidzena ta Informacijni Tehnologii
Sistemni Doslidzena ta Informacijni Tehnologii Computer Science-Computational Theory and Mathematics
CiteScore
0.60
自引率
0.00%
发文量
22
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信