{"title":"Effect of low temperature and moisture on bond properties of PVA fibres and engineered cementitious composite matrix","authors":"Shuling Gao, Qing Wang","doi":"10.1680/jadcr.22.00003","DOIUrl":null,"url":null,"abstract":"The chemical debonding energy, initial interfacial frictional bond strength and slip-hardening coefficient between polyvinyl alcohol (PVA) fibres and an engineered cementitious composite (ECC) matrix were obtained by means of single PVA fibre pull-out tests. The effect of three moisture states (fully saturated, semi-saturated and fully dry) on the bonding properties between the PVA fibre and ECC matrix at three target temperatures (25°C, 0°C and −20°C) was investigated. It was found that, at 25°C, the bonding properties decreased with an increase in moisture content. At 0°C and −20°C, the bonding properties increased with an increase in moisture content. At −20°C in the fully saturated state, the bonding load was too large to cause fibre rupture. The bonding properties were found to increase with decreasing temperature in the fully saturated and semi-saturated states and decrease with decreasing temperature in the fully dry state. This study of the effect of low temperature and moisture state on the bonding properties between PVA fibres and ECCs provides theoretical support for how to ensure good ductility when ECCs are in service at low temperature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jadcr.22.00003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The chemical debonding energy, initial interfacial frictional bond strength and slip-hardening coefficient between polyvinyl alcohol (PVA) fibres and an engineered cementitious composite (ECC) matrix were obtained by means of single PVA fibre pull-out tests. The effect of three moisture states (fully saturated, semi-saturated and fully dry) on the bonding properties between the PVA fibre and ECC matrix at three target temperatures (25°C, 0°C and −20°C) was investigated. It was found that, at 25°C, the bonding properties decreased with an increase in moisture content. At 0°C and −20°C, the bonding properties increased with an increase in moisture content. At −20°C in the fully saturated state, the bonding load was too large to cause fibre rupture. The bonding properties were found to increase with decreasing temperature in the fully saturated and semi-saturated states and decrease with decreasing temperature in the fully dry state. This study of the effect of low temperature and moisture state on the bonding properties between PVA fibres and ECCs provides theoretical support for how to ensure good ductility when ECCs are in service at low temperature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.