Flow-Induced Vibration and Heat Transfer Analysis for a Novel Hollow Heat Exchanger

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Yaru Sun, Jiadong Ji, Zisen Hua, Runmiao Gao, Chengjun Wang
{"title":"Flow-Induced Vibration and Heat Transfer Analysis for a Novel Hollow Heat Exchanger","authors":"Yaru Sun, Jiadong Ji, Zisen Hua, Runmiao Gao, Chengjun Wang","doi":"10.2514/1.t6588","DOIUrl":null,"url":null,"abstract":"A novel hollow shell-and-tube heat exchanger with helical elastic coiled tubes was designed to improve the overall heat transfer performance. Different numbers of helical baffles installed on the hollow helical elastic tubes (HHETs) heat exchanger were compared with the HHET heat exchanger without a baffle. The fluid–solid coupling method was provided to study the effects of the entrance velocity and baffle number on the performances of heat transfer and vibration-enhanced heat transfer. Based on the numerical results, the performances of vibration and heat transfer become more obvious by increasing the entrance velocity. Compared with the HHET heat exchanger without a baffle, adding a baffle or baffles on the HHET heat exchanger can remarkably make the fluid flow more consistent. Whereas a higher number of baffles can weaken the vibration and heat transfer performance of the novel heat exchange, the performance evaluation criteria of the HHET heat exchanger with one baffle, two baffles, and four baffles is improved by 2.04, 4.37, and 2.3%, respectively. It indicates that adding a baffle or baffles to the novel heat exchanger can effectively improve the overall thermal and hydraulic characteristics of the novel heat exchanger.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":"12 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.t6588","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

A novel hollow shell-and-tube heat exchanger with helical elastic coiled tubes was designed to improve the overall heat transfer performance. Different numbers of helical baffles installed on the hollow helical elastic tubes (HHETs) heat exchanger were compared with the HHET heat exchanger without a baffle. The fluid–solid coupling method was provided to study the effects of the entrance velocity and baffle number on the performances of heat transfer and vibration-enhanced heat transfer. Based on the numerical results, the performances of vibration and heat transfer become more obvious by increasing the entrance velocity. Compared with the HHET heat exchanger without a baffle, adding a baffle or baffles on the HHET heat exchanger can remarkably make the fluid flow more consistent. Whereas a higher number of baffles can weaken the vibration and heat transfer performance of the novel heat exchange, the performance evaluation criteria of the HHET heat exchanger with one baffle, two baffles, and four baffles is improved by 2.04, 4.37, and 2.3%, respectively. It indicates that adding a baffle or baffles to the novel heat exchanger can effectively improve the overall thermal and hydraulic characteristics of the novel heat exchanger.
新型中空换热器的流激振动及传热分析
为了提高换热器的整体传热性能,设计了一种新型的螺旋弹性盘管空心壳管换热器。对中空螺旋弹性管换热器与不安装折流板的中空螺旋弹性管换热器进行了比较。采用流固耦合的方法研究了入口速度和挡板数对换热性能和振动强化换热性能的影响。数值结果表明,随着入口速度的增大,振动和换热性能更加明显。与不加折流板的het换热器相比,在het换热器上加一个或多个折流板可以显著地使流体流动更加均匀。较高的挡板数量会削弱新型换热器的振动和换热性能,而单挡板、双挡板和四挡板的HHET换热器的性能评价标准分别提高了2.04、4.37和2.3%。表明在新型换热器中增加一个或多个挡板可以有效地改善新型换热器的整体热工特性和水力特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信