Noor S. Mahmood, Amjad J. Humaidi, Raaed S. Al-Azzawi, Ammar Al-Jodah
{"title":"Extended state observer design for uncertainty estimation in electronic throttle valve system","authors":"Noor S. Mahmood, Amjad J. Humaidi, Raaed S. Al-Azzawi, Ammar Al-Jodah","doi":"10.1556/1848.2023.00662","DOIUrl":null,"url":null,"abstract":"Abstract The Electronic Throttle Valve (ETV) is the core part of automotive engines which are recently used in control-by-wire cars. The estimation of its states and uncertainty is instructive for control applications. This study presents the design of Extended State Observer (ESO) for estimating the states and uncertainties of Electronic Throttle Valve (ETV). Two versions of ESOs have been proposed for estimation: Linear ESO (LESO) and Nonlinear ESO (NESO). The model of ETV is firstly developed and extended in state variable form such that the extended state stands for the uncertainty in system parameters. The design of both structures of ESOs are developed and a comparison study has been conducted to show the effectiveness of the proposed observers. Numerical simulation has been conducted to assess the performance of observers in estimating the states and uncertainties of ETV. The simulated results showed that both full order and reduced order models of ETV have the same transient characteristics. Moreover, the effectiveness of two versions of observers has been examined based on Root Mean Square of Error (RMSE) indicator. The results showed that the NESO has less estimation errors for both states and uncertainties than LESO.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Electronic Throttle Valve (ETV) is the core part of automotive engines which are recently used in control-by-wire cars. The estimation of its states and uncertainty is instructive for control applications. This study presents the design of Extended State Observer (ESO) for estimating the states and uncertainties of Electronic Throttle Valve (ETV). Two versions of ESOs have been proposed for estimation: Linear ESO (LESO) and Nonlinear ESO (NESO). The model of ETV is firstly developed and extended in state variable form such that the extended state stands for the uncertainty in system parameters. The design of both structures of ESOs are developed and a comparison study has been conducted to show the effectiveness of the proposed observers. Numerical simulation has been conducted to assess the performance of observers in estimating the states and uncertainties of ETV. The simulated results showed that both full order and reduced order models of ETV have the same transient characteristics. Moreover, the effectiveness of two versions of observers has been examined based on Root Mean Square of Error (RMSE) indicator. The results showed that the NESO has less estimation errors for both states and uncertainties than LESO.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.