Generalization of a density theorem of Khinchin and diophantine approximation

Pub Date : 2023-10-10 DOI:10.5802/jtnb.1255
József Beck, William W. L. Chen
{"title":"Generalization of a density theorem of Khinchin and diophantine approximation","authors":"József Beck, William W. L. Chen","doi":"10.5802/jtnb.1255","DOIUrl":null,"url":null,"abstract":"The continuous version of a famous result of Khinchin says that a half-infinite torus line in the unit square [0,1] 2 exhibits superdensity, a best form of time-quantitative density, if and only if the slope of the geodesic is a badly approximable number. We extend this result of Khinchin to the case when the unit torus [0,1] 2 is replaced by a finite polysquare translation surface, or square tiled surface. In particular, we show that it is possible to study this very number-theoretic problem by restricting to traditional tools in number theory, using only continued fractions and the famous 3-distance theorem in diophantine approximation combined with an iterative process.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The continuous version of a famous result of Khinchin says that a half-infinite torus line in the unit square [0,1] 2 exhibits superdensity, a best form of time-quantitative density, if and only if the slope of the geodesic is a badly approximable number. We extend this result of Khinchin to the case when the unit torus [0,1] 2 is replaced by a finite polysquare translation surface, or square tiled surface. In particular, we show that it is possible to study this very number-theoretic problem by restricting to traditional tools in number theory, using only continued fractions and the famous 3-distance theorem in diophantine approximation combined with an iterative process.
分享
查看原文
Khinchin密度定理与丢番图近似的推广
Khinchin的一个著名结果的连续版本表明,单位平方[0,1]2中的半无限环面线表现出超密度,这是时间定量密度的最佳形式,当且仅当测地线的斜率是一个非常近似的数字。我们将Khinchin的这一结果推广到单元环面[0,1]2被有限多方平动面或正方形平铺面所取代的情况。特别是,我们证明了通过限制传统数论工具,仅使用连分式和著名的丢番图近似中的3-距离定理结合迭代过程来研究这个非常数论的问题是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信