Spatiotemporal Dynamics of a Reaction Diffusive Predator-Prey Model: A Weak Nonlinear Analysis

IF 1.4 Q2 MATHEMATICS, APPLIED
N. B. Sharmila, C. Gunasundari, Mohammad Sajid
{"title":"Spatiotemporal Dynamics of a Reaction Diffusive Predator-Prey Model: A Weak Nonlinear Analysis","authors":"N. B. Sharmila, C. Gunasundari, Mohammad Sajid","doi":"10.1155/2023/9190167","DOIUrl":null,"url":null,"abstract":"In the realm of ecology, species naturally strive to enhance their own survival odds. This study introduces and investigates a predator-prey model incorporating reaction-diffusion through a system of differential equations. We scrutinize how diffusion impacts the model’s stability. By analysing the stability of the model’s uniform equilibrium state, we identify a condition leading to Turing instability. The study delves into how diffusion influences pattern formation within a predator-prey system. Our findings reveal that various spatiotemporal patterns, such as patches, spots, and even chaos, emerge based on species diffusion rates. We derive the amplitude equation by employing the weak nonlinear multiple scales analysis technique and the Taylor series expansion. A novel sinc interpolation approach is introduced. Numerical simulations elucidate the interplay between diffusion and Turing parameters. In a two-dimensional domain, spatial pattern analysis illustrates population density dynamics resulting in isolated groups, spots, stripes, or labyrinthine patterns. Simulation results underscore the method’s effectiveness. The article concludes by discussing the biological implications of these outcomes.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9190167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of ecology, species naturally strive to enhance their own survival odds. This study introduces and investigates a predator-prey model incorporating reaction-diffusion through a system of differential equations. We scrutinize how diffusion impacts the model’s stability. By analysing the stability of the model’s uniform equilibrium state, we identify a condition leading to Turing instability. The study delves into how diffusion influences pattern formation within a predator-prey system. Our findings reveal that various spatiotemporal patterns, such as patches, spots, and even chaos, emerge based on species diffusion rates. We derive the amplitude equation by employing the weak nonlinear multiple scales analysis technique and the Taylor series expansion. A novel sinc interpolation approach is introduced. Numerical simulations elucidate the interplay between diffusion and Turing parameters. In a two-dimensional domain, spatial pattern analysis illustrates population density dynamics resulting in isolated groups, spots, stripes, or labyrinthine patterns. Simulation results underscore the method’s effectiveness. The article concludes by discussing the biological implications of these outcomes.
反应扩散捕食者-猎物模型的时空动力学:弱非线性分析
在生态领域,物种自然会努力提高自己的生存几率。本文通过微分方程系统引入并研究了一个包含反应-扩散的捕食者-猎物模型。我们仔细研究扩散如何影响模型的稳定性。通过分析模型均匀平衡状态的稳定性,我们确定了导致图灵不稳定性的条件。这项研究深入研究了扩散如何影响捕食者-猎物系统中的模式形成。我们的研究结果表明,不同的时空模式,如斑块、斑点甚至混沌,都是基于物种扩散速率而出现的。利用弱非线性多尺度分析技术和泰勒级数展开,推导出振幅方程。介绍了一种新的正弦插值方法。数值模拟阐明了扩散和图灵参数之间的相互作用。在二维领域,空间模式分析说明人口密度动态导致孤立的群体,斑点,条纹,或迷宫的模式。仿真结果验证了该方法的有效性。文章最后讨论了这些结果的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信