{"title":"A mixed-integer approximation of robust optimization problems with mixed-integer adjustments","authors":"Jan Kronqvist, Boda Li, Jan Rolfes","doi":"10.1007/s11081-023-09843-7","DOIUrl":null,"url":null,"abstract":"Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09843-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In the present article we propose a mixed-integer approximation of adjustable-robust optimization problems, that have both, continuous and discrete variables on the lowest level. As these trilevel problems are notoriously hard to solve, we restrict ourselves to weakly-connected instances. Our approach allows us to approximate, and in some cases exactly represent, the trilevel problem as a single-level mixed-integer problem. This allows us to leverage the computational efficiency of state-of-the-art mixed-integer programming solvers. We demonstrate the value of this approach by applying it to the optimization of power systems, particularly to the control of smart converters.