Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves

IF 0.3 4区 数学 Q4 MATHEMATICS
Toshiro Hiranouchi, Tatsuya Ohshita
{"title":"Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves","authors":"Toshiro Hiranouchi, Tatsuya Ohshita","doi":"10.5802/jtnb.1258","DOIUrl":null,"url":null,"abstract":"In this article, we study a relation between certain quotients of ideal class groups and the cyclotomic Iwasawa module X ∞ of the Pontrjagin dual of the fine Selmer group of an elliptic curve E defined over ℚ. We consider the Galois extension field K n E of ℚ generated by coordinates of all p n -torsion points of E, and introduce a quotient A n E of the p-Sylow subgroup of the ideal class group of K n E cut out by the modulo p n Galois representation E[p n ]. We describe the asymptotic behavior of A n E by using the Iwasawa module X ∞ . In particular, under certain conditions, we obtain an asymptotic formula as Iwasawa’s class number formula on the order of A n E by using Iwasawa’s invariants of X ∞ .","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"74 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1258","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study a relation between certain quotients of ideal class groups and the cyclotomic Iwasawa module X ∞ of the Pontrjagin dual of the fine Selmer group of an elliptic curve E defined over ℚ. We consider the Galois extension field K n E of ℚ generated by coordinates of all p n -torsion points of E, and introduce a quotient A n E of the p-Sylow subgroup of the ideal class group of K n E cut out by the modulo p n Galois representation E[p n ]. We describe the asymptotic behavior of A n E by using the Iwasawa module X ∞ . In particular, under certain conditions, we obtain an asymptotic formula as Iwasawa’s class number formula on the order of A n E by using Iwasawa’s invariants of X ∞ .
类群的渐近性与椭圆曲线的分环Iwasawa理论
本文研究了理想类群的某些商与椭圆曲线E上定义的精细Selmer群的Pontrjagin对偶的环切Iwasawa模X∞之间的关系。考虑由E的所有pn -扭力点的坐标生成的π的伽罗瓦扩展域K n E,并引入由模p n伽罗瓦表示E分割的K n E的理想类群的p- sylow子群的商an E[p n]。利用Iwasawa模X∞描述了A n E的渐近行为。特别地,在一定条件下,利用X∞上的Iwasawa不变量,得到了A ~ E阶的Iwasawa类数公式的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信