Formal Stationary Phase for the Mellin Transform of a $\mathcal D$-Module

IF 1.1 2区 数学 Q1 MATHEMATICS
Ricardo García López
{"title":"Formal Stationary Phase for the Mellin Transform of a $\\mathcal D$-Module","authors":"Ricardo García López","doi":"10.4171/prims/59-3-2","DOIUrl":null,"url":null,"abstract":"Given a holonomic $\\mathbb{C}\\[z,z^{-1}]\\langle \\partial\\_z\\rangle$-module $\\mathbb{M}$, following Loeser and Sabbah (Comment. Math. Helv. $\\mathbf{66}$ (1991), 458–503), one can consider its Mellin transform, which is a difference system on the affine line over $\\mathbb{C}$. In this note we prove a stationary phase formula, which shows that its formal behavior at infinity is determined by the local germs defined by $\\mathbb{M}$ at its singular points.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a holonomic $\mathbb{C}\[z,z^{-1}]\langle \partial\_z\rangle$-module $\mathbb{M}$, following Loeser and Sabbah (Comment. Math. Helv. $\mathbf{66}$ (1991), 458–503), one can consider its Mellin transform, which is a difference system on the affine line over $\mathbb{C}$. In this note we prove a stationary phase formula, which shows that its formal behavior at infinity is determined by the local germs defined by $\mathbb{M}$ at its singular points.
数学D -模的Mellin变换的形式平稳相位
给定一个完整的$\mathbb{C}\[z,z^{-1}]\langle \partial\_z\rangle$ -模块$\mathbb{M}$,遵循Loeser和Sabbah(注释)。数学。救命。$\mathbf{66}$(1991), 458-503),我们可以考虑它的Mellin变换,它是$\mathbb{C}$上仿射线上的一个差分系统。在这篇笔记中,我们证明了一个定相公式,该公式表明它在无穷远处的形式行为是由其奇点处由$\mathbb{M}$定义的局部细菌决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信