On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs

IF 0.5 Q3 MATHEMATICS
T. Haritha, A.V. Chithra
{"title":"On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs","authors":"T. Haritha, A.V. Chithra","doi":"10.52737/18291163-2023.15.10-1-16","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new graph operation based on a central graph called central vertex-edge join (denoted by $G_{n_1}^C \\triangleright (G_{n_2}^V\\cup G_{n_3}^E)$) and then determine the distance spectrum of $G_{n_1}^C \\triangleright (G_{n_2}^V\\cup G_{n_3}^E)$ in terms of the adjacency spectra of regular graphs $G_1$, $G_2$ and $G_3$ when $G_1$ is triangle-free. As a consequence of this result, we construct new families of non-D-cospectral D-equienergetic graphs. Moreover, we determine bounds for the distance spectral radius and distance energy of the central vertex-edge join of three regular graphs. In addition, we provide its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, Wiener index. Using these results, we calculate the topological indices of the organic compounds Methylcyclobutane $(C_5H_{10})$ and Spirohexane $(C_6H_{10})$.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":"9 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2023.15.10-1-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new graph operation based on a central graph called central vertex-edge join (denoted by $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$) and then determine the distance spectrum of $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$ in terms of the adjacency spectra of regular graphs $G_1$, $G_2$ and $G_3$ when $G_1$ is triangle-free. As a consequence of this result, we construct new families of non-D-cospectral D-equienergetic graphs. Moreover, we determine bounds for the distance spectral radius and distance energy of the central vertex-edge join of three regular graphs. In addition, we provide its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, Wiener index. Using these results, we calculate the topological indices of the organic compounds Methylcyclobutane $(C_5H_{10})$ and Spirohexane $(C_6H_{10})$.
三图中心点边连接的距离谱和基于距离的拓扑指标
本文引入了一种新的基于中心图的图运算,称为中心点边连接(记为$G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$),然后根据正则图$G_1$、$G_2$和$G_3$的邻接谱,确定了$G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$的距离谱。由于这一结果,我们构造了新的非d -共谱d -等能图族。此外,我们还确定了三个正则图的中心点边连接的距离谱半径和距离能量的界限。此外,我们还给出了与偏心连通性指数、连接偏心指数、总偏心指数、平均偏心指数、Zagreb偏心指数、偏心几何算术指数、偏心原子键连通性指数、Wiener指数等图不变量相关的结果。利用这些结果,我们计算了有机化合物甲基环丁烷$(C_5H_{10})$和螺旋己烷$(C_6H_{10})$的拓扑指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信