Refinement of Gautschi's harmonic mean inequality for the gamma function

Horst Alzer
{"title":"Refinement of Gautschi's harmonic mean inequality for the gamma function","authors":"Horst Alzer","doi":"10.4171/rsmup/152","DOIUrl":null,"url":null,"abstract":"In 1974, W. Gautschi proved that $$ 1<\\frac{2}{1/\\Gamma(x) +1/\\Gamma(1/x)} \\quad \\textrm{for} \\quad 0\\<x\\neq 1. $$ Here, we present the following refinement: $$ 1<\\Gamma\\Bigl( \\frac{2}{x+1/x}\\Bigr)< \\frac{2}{1/\\Gamma(x) +1/\\Gamma(1/x)}, \\quad 0\\<x\\neq 1. $$","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1974, W. Gautschi proved that $$ 1<\frac{2}{1/\Gamma(x) +1/\Gamma(1/x)} \quad \textrm{for} \quad 0\
函数的高斯奇调和平均不等式的改进
1974年,W. Gautschi证明了$$ 1<\frac{2}{1/\Gamma(x) +1/\Gamma(1/x)} \quad \textrm{for} \quad 0\
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信