ON CORRECT SOLVABILITY OF DIRICHLET PROBLEM IN A HALF-SPACE FOR REGULAR EQUATIONS WITH NON-HOMOGENEOUS BOUNDARY CONDITIONS

Mikayel A. Khachaturyan
{"title":"ON CORRECT SOLVABILITY OF DIRICHLET PROBLEM IN A HALF-SPACE FOR REGULAR EQUATIONS WITH NON-HOMOGENEOUS BOUNDARY CONDITIONS","authors":"Mikayel A. Khachaturyan","doi":"10.46991/pysu:a/2023.57.2.044","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following Dirichlet problem with non-homogeneous boundary conditions in a multianisotropic Sobolev space $W_2^{\\mathfrak{M}}(R^2 \\times R_+)$ $$\\begin{cases} P(D_x, D_{x_3}) u = f(x, x_3), \\quad x_3 > 0, \\quad x \\in R^2, \\\\ D_{x_3}^s u \\big\\rvert_{x_3 = 0} = \\varphi_s(x),\\quad s = 0, \\dots, m-1. \\end{cases} $$ It is assumed that $P(D_x, D_{x_3})$ is a multianisotopic regular operator of a special form with a characteristic polyhedron $\\mathfrak{M}$. We prove unique solvability of the problem in the space $W_2^{\\mathfrak{M}}(R^2 \\times R_+)$, assuming additionally, that $f(x, x_3)$ belongs to $L_2(R^2 \\times R^+)$ and has a compact support, boundary functions $\\varphi_s$ belong to special Sobolev spaces of fractional order and have compact supports.","PeriodicalId":500357,"journal":{"name":"Proceedings of the Yerevan State University","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Yerevan State University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2023.57.2.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the following Dirichlet problem with non-homogeneous boundary conditions in a multianisotropic Sobolev space $W_2^{\mathfrak{M}}(R^2 \times R_+)$ $$\begin{cases} P(D_x, D_{x_3}) u = f(x, x_3), \quad x_3 > 0, \quad x \in R^2, \\ D_{x_3}^s u \big\rvert_{x_3 = 0} = \varphi_s(x),\quad s = 0, \dots, m-1. \end{cases} $$ It is assumed that $P(D_x, D_{x_3})$ is a multianisotopic regular operator of a special form with a characteristic polyhedron $\mathfrak{M}$. We prove unique solvability of the problem in the space $W_2^{\mathfrak{M}}(R^2 \times R_+)$, assuming additionally, that $f(x, x_3)$ belongs to $L_2(R^2 \times R^+)$ and has a compact support, boundary functions $\varphi_s$ belong to special Sobolev spaces of fractional order and have compact supports.
半空间中非齐次边界条件正则方程dirichlet问题的正确可解性
本文考虑多各向异性Sobolev空间中具有非齐次边界条件的Dirichlet问题$W_2^{\mathfrak{M}}(R^2 \times R_+)$$$\begin{cases} P(D_x, D_{x_3}) u = f(x, x_3), \quad x_3 > 0, \quad x \in R^2, \\ D_{x_3}^s u \big\rvert_{x_3 = 0} = \varphi_s(x),\quad s = 0, \dots, m-1. \end{cases} $$,假设$P(D_x, D_{x_3})$是具有特征多面体$\mathfrak{M}$的特殊形式的多各向异性正则算子。我们证明了问题在空间$W_2^{\mathfrak{M}}(R^2 \times R_+)$上的唯一可解性,另外假设$f(x, x_3)$属于$L_2(R^2 \times R^+)$并且有紧支持,边界函数$\varphi_s$属于分数阶的特殊Sobolev空间并且有紧支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信