Rafael Conradt, Philipp Schröer, Martin Dazer, Jonathan Wirth, Florian Jöris, Dominik Schulte, Kai Peter Birke
{"title":"Comprehensive Study of Failure Mechanisms of Field-Aged Automotive Lead Batteries","authors":"Rafael Conradt, Philipp Schröer, Martin Dazer, Jonathan Wirth, Florian Jöris, Dominik Schulte, Kai Peter Birke","doi":"10.3390/batteries9110553","DOIUrl":null,"url":null,"abstract":"Modern vehicles have increasing safety requirements and a need for reliable low-voltage power supply in their on-board power supply systems. Understanding the causes and probabilities of failures in a 12 V power supply is crucial. Field analyses of aged and failed 12 V lead batteries can provide valuable insights regarding this topic. In a previous study, non-invasive electrical testing was used to objectively determine the reasons for failure and the lifetime of individual batteries. By identifying all of the potential failure mechanisms, the Latin hypercube sampling method was found to effectively reduce the required sample size. To ensure sufficient confidence in validating diagnostic algorithms and calculating time-dependent failure rates, all identified aging phenomena must be considered. This study presents a probability distribution of the failure mechanisms that occur in the field, as well as provides insights into potential opportunities, but it also challenges diagnostic approaches for current and future vehicles.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"4 7","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries9110553","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern vehicles have increasing safety requirements and a need for reliable low-voltage power supply in their on-board power supply systems. Understanding the causes and probabilities of failures in a 12 V power supply is crucial. Field analyses of aged and failed 12 V lead batteries can provide valuable insights regarding this topic. In a previous study, non-invasive electrical testing was used to objectively determine the reasons for failure and the lifetime of individual batteries. By identifying all of the potential failure mechanisms, the Latin hypercube sampling method was found to effectively reduce the required sample size. To ensure sufficient confidence in validating diagnostic algorithms and calculating time-dependent failure rates, all identified aging phenomena must be considered. This study presents a probability distribution of the failure mechanisms that occur in the field, as well as provides insights into potential opportunities, but it also challenges diagnostic approaches for current and future vehicles.