Collective effects in flow-driven cell migration

Louis González, Andrew Mugler
{"title":"Collective effects in flow-driven cell migration","authors":"Louis González, Andrew Mugler","doi":"10.1103/physreve.108.054406","DOIUrl":null,"url":null,"abstract":"Autologous chemotaxis is the process in which cells secrete and detect molecules to determine the direction of fluid flow. Experiments and theory suggest that autologous chemotaxis fails at high cell densities because molecules from other cells interfere with a given cell's signal. We investigate autologous chemotaxis using a three-dimensional Monte Carlo-based motility simulation that couples spatial and temporal gradient sensing with cell-cell repulsion. Surprisingly, we find that when temporal gradient sensing dominates, high-density clusters chemotax faster than individual cells. To explain this observation, we propose a mechanism by which temporal gradient sensing allows cells to form a collective sensory unit. We demonstrate using computational fluid mechanics that that this mechanism indeed allows a cluster of cells to outperform single cells in terms of the detected anisotropy of the signal, a finding that we demonstrate with analytic scaling arguments. Our work suggests that collective autologous chemotaxis at high cell densities is possible and requires only known, ubiquitous cell capabilities.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"45 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autologous chemotaxis is the process in which cells secrete and detect molecules to determine the direction of fluid flow. Experiments and theory suggest that autologous chemotaxis fails at high cell densities because molecules from other cells interfere with a given cell's signal. We investigate autologous chemotaxis using a three-dimensional Monte Carlo-based motility simulation that couples spatial and temporal gradient sensing with cell-cell repulsion. Surprisingly, we find that when temporal gradient sensing dominates, high-density clusters chemotax faster than individual cells. To explain this observation, we propose a mechanism by which temporal gradient sensing allows cells to form a collective sensory unit. We demonstrate using computational fluid mechanics that that this mechanism indeed allows a cluster of cells to outperform single cells in terms of the detected anisotropy of the signal, a finding that we demonstrate with analytic scaling arguments. Our work suggests that collective autologous chemotaxis at high cell densities is possible and requires only known, ubiquitous cell capabilities.
流动驱动细胞迁移中的集体效应
自体趋化是细胞分泌和检测分子以确定流体流动方向的过程。实验和理论表明,由于来自其他细胞的分子干扰了给定细胞的信号,自体趋化性在高细胞密度下失效。我们使用三维蒙特卡罗运动模拟来研究自体趋化性,该模拟将空间和时间梯度传感与细胞-细胞排斥相结合。令人惊讶的是,我们发现当时间梯度传感占主导地位时,高密度集群比单个细胞更快地趋化。为了解释这一观察结果,我们提出了一种机制,通过这种机制,时间梯度传感允许细胞形成一个集体的感觉单元。我们使用计算流体力学证明,这种机制确实允许细胞簇在检测信号的各向异性方面优于单个细胞,我们用解析缩放论证证明了这一发现。我们的工作表明,在高细胞密度下,集体自体趋化是可能的,只需要已知的、普遍存在的细胞能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信