Slicing the Nash equilibrium manifold

IF 1.4 3区 数学 Q1 MATHEMATICS
Yehuda John Levy
{"title":"Slicing the Nash equilibrium manifold","authors":"Yehuda John Levy","doi":"10.1007/s11784-023-01088-2","DOIUrl":null,"url":null,"abstract":"Abstract This paper uses tools on the structure of the Nash equilibrium correspondence of strategic-form games to characterize a class of fixed-point correspondences, that is, correspondences assigning, for a given parametrized function, the fixed-points associated with each value of the parameter. After generalizing recent results from the game-theoretic literature, we deduce that every fixed-point correspondence associated with a semi-algebraic function is the projection of a Nash equilibrium correspondence, and hence its graph is a slice of a projection, as well as a projection of a slice, of a manifold that is homeomorphic, even isotopic, to a Euclidean space. As a result, we derive an illustrative proof of Browder’s theorem for fixed-point correspondences.","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-023-01088-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper uses tools on the structure of the Nash equilibrium correspondence of strategic-form games to characterize a class of fixed-point correspondences, that is, correspondences assigning, for a given parametrized function, the fixed-points associated with each value of the parameter. After generalizing recent results from the game-theoretic literature, we deduce that every fixed-point correspondence associated with a semi-algebraic function is the projection of a Nash equilibrium correspondence, and hence its graph is a slice of a projection, as well as a projection of a slice, of a manifold that is homeomorphic, even isotopic, to a Euclidean space. As a result, we derive an illustrative proof of Browder’s theorem for fixed-point correspondences.

Abstract Image

切纳什均衡流形
摘要本文利用策略型对策纳什均衡对应结构的工具,刻画了一类不动点对应,即对于给定的参数化函数,分配与参数的每个值相关联的不动点对应。在推广博弈论文献的最新结果之后,我们推导出与半代数函数相关的每一个不动点对应都是纳什均衡对应的投影,因此它的图是一个投影的一个切片,以及一个投影的一个切片,一个流形是同纯的,甚至是同位素的,欧几里得空间。结果,我们得到了不动点对应的Browder定理的一个说明性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信