Influence of Austempering Conditions on Hardness and Microstructure of Bainite in Low-Alloyed Steel

IF 2.2 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Adam Ståhlkrantz, Peter Hedström, Niklas Sarius, Annika Borgenstam
{"title":"Influence of Austempering Conditions on Hardness and Microstructure of Bainite in Low-Alloyed Steel","authors":"Adam Ståhlkrantz, Peter Hedström, Niklas Sarius, Annika Borgenstam","doi":"10.1007/s11661-023-07243-1","DOIUrl":null,"url":null,"abstract":"Abstract The influence of austempering temperature and time on the microstructure and hardness of a low-alloyed bainitic steel is investigated in the temperature range 275 °C to 375 °C for up to 24 hours. It is shown that the dislocation density and coarseness of the bainitic microstructure are affected by the austempering temperature, while only the dislocation density is significantly affected by the austempering time. The hardness of the steel is estimated based on microstructure–property relations and is in good agreement with the measured hardness. In conclusion, the decrease in dislocation density is the main reason for loss in hardness upon increasing austempering temperature and/or time for the studied temperature range.","PeriodicalId":49827,"journal":{"name":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","volume":"30 3","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-023-07243-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The influence of austempering temperature and time on the microstructure and hardness of a low-alloyed bainitic steel is investigated in the temperature range 275 °C to 375 °C for up to 24 hours. It is shown that the dislocation density and coarseness of the bainitic microstructure are affected by the austempering temperature, while only the dislocation density is significantly affected by the austempering time. The hardness of the steel is estimated based on microstructure–property relations and is in good agreement with the measured hardness. In conclusion, the decrease in dislocation density is the main reason for loss in hardness upon increasing austempering temperature and/or time for the studied temperature range.

Abstract Image

等温回火条件对低合金钢贝氏体硬度和组织的影响
研究了在275 ~ 375℃条件下等温回火24小时,温度和时间对低合金贝氏体钢组织和硬度的影响。结果表明,等温回火温度对贝氏体组织的位错密度和粗度有影响,而等温回火时间只对位错密度有显著影响。根据显微组织-性能关系估算了钢的硬度,与实测硬度吻合较好。综上所述,在研究的温度范围内,随着等温温度和/或时间的增加,位错密度的降低是硬度损失的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
7.10%
发文量
322
审稿时长
6 months
期刊介绍: Metallurgical and Materials Transactions A focuses on the latest research in all aspects of physical metallurgy and materials science. It explores relationships among processing, structure, and properties of materials; publishes critically reviewed, original research of archival significance. The journal address the main topics of alloy phases; transformations; transport phenomena; mechanical behavior; physical chemistry; environment; welding & joining; surface treatment; electronic, magnetic & optical material; solidification; materials processing; composite materials; biomaterials; and light metals. MMTA publishes Technical Publications, Communications, Symposia, and more. Published with ASM International, The Materials Information Society and The Minerals, Metals & Materials Society (TMS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信