MoveR: an R package for easy processing and analysis of animal video-tracking data

Quentin PETITJEAN, Silene LARTIGUE, Melina COINTE, Nicolas RIS, vincent calcagno
{"title":"MoveR: an R package for easy processing and analysis of animal video-tracking data","authors":"Quentin PETITJEAN, Silene LARTIGUE, Melina COINTE, Nicolas RIS, vincent calcagno","doi":"10.1101/2023.11.08.566216","DOIUrl":null,"url":null,"abstract":"Animal movement and behavior are critical to understanding ecological and evolutionary processes. Recent years have witnessed an increase in methodological and technological innovations in video-tracking solutions for phenotyping animal behavior. Although these advances enable the collection of high-resolution data describing the movement of multiple individuals, analyzing and interpreting them remains challenging due to their complexity, heterogeneity, and noisiness. Here, we introduce MoveR, an R package for importing, filtering, visualizing, and analyzing data from common video-tracking solutions. MoveR includes flexible tools for polishing data, removing tracking artifacts, subsetting and plotting individual paths, and computing different movement and behavior metrics.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"39 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.08.566216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animal movement and behavior are critical to understanding ecological and evolutionary processes. Recent years have witnessed an increase in methodological and technological innovations in video-tracking solutions for phenotyping animal behavior. Although these advances enable the collection of high-resolution data describing the movement of multiple individuals, analyzing and interpreting them remains challenging due to their complexity, heterogeneity, and noisiness. Here, we introduce MoveR, an R package for importing, filtering, visualizing, and analyzing data from common video-tracking solutions. MoveR includes flexible tools for polishing data, removing tracking artifacts, subsetting and plotting individual paths, and computing different movement and behavior metrics.
MoveR:一个R软件包,用于轻松处理和分析动物视频跟踪数据
动物的运动和行为是理解生态和进化过程的关键。近年来,在动物行为表型的视频跟踪解决方案的方法和技术创新有所增加。尽管这些进步能够收集描述多个个体运动的高分辨率数据,但由于其复杂性、异质性和噪声,分析和解释这些数据仍然具有挑战性。在这里,我们介绍MoveR,这是一个R包,用于导入、过滤、可视化和分析来自常见视频跟踪解决方案的数据。MoveR包括灵活的工具,用于抛光数据,去除跟踪工件,子集和绘制单个路径,以及计算不同的运动和行为指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信