Separation and quantification of organic‐related impurities of beta‐adrenergic receptor blocking agent propranolol in pharmaceutical solid dosage forms: Impurity profiling using stability‐indicating HPLC method
Mohan Pasham, Sharath Babu Haridasyam, Niroja Vadagam, N. V. V. D. Praveen Boppy, Sanjeeva R. Chinnakadoori, Narasimha S. Lakka
{"title":"Separation and quantification of organic‐related impurities of beta‐adrenergic receptor blocking agent propranolol in pharmaceutical solid dosage forms: Impurity profiling using stability‐indicating HPLC method","authors":"Mohan Pasham, Sharath Babu Haridasyam, Niroja Vadagam, N. V. V. D. Praveen Boppy, Sanjeeva R. Chinnakadoori, Narasimha S. Lakka","doi":"10.1002/sscp.202300159","DOIUrl":null,"url":null,"abstract":"Abstract Propranolol hydrochloride (PPH) is a medication of beta‐adrenergic receptors. It is used to treat pediatric hemangiomas that are growing and need systemic therapy. A reversed‐phase high‐performance liquid chromatography (HPLC) was made to separate and estimate the amounts of ten known organic impurities of propranolol in bulk drugs, tablets, and capsule dosage forms. The chromatographic separation was achieved on a C 18 column (100 × 4.6 mm, 2.7 μm) using a binary gradient mixture of pH 2.3 phosphate buffer and organic modifiers of acetonitrile, methanol, and isopropyl alcohol as the mobile phase. The stability‐indicating character of the proposed method was proven using stress testing study. The test method was validated for specificity, limit of detection, limit of quantitation, linearity, precision, accuracy, and robustness. For the propranolol and its ten organic impurities, the limit of quantitation, linearity, and recoveries were found in a range of 0.0123–0.4266 μg/mL ( R 2 > 0.9982) and 89.2–98.9%, respectively. The proposed liquid chromatography method is found to be highly suitable for impurity profiling of propranolol in bulk drugs and pharmaceutical formulations (tablets and capsules).","PeriodicalId":21639,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Propranolol hydrochloride (PPH) is a medication of beta‐adrenergic receptors. It is used to treat pediatric hemangiomas that are growing and need systemic therapy. A reversed‐phase high‐performance liquid chromatography (HPLC) was made to separate and estimate the amounts of ten known organic impurities of propranolol in bulk drugs, tablets, and capsule dosage forms. The chromatographic separation was achieved on a C 18 column (100 × 4.6 mm, 2.7 μm) using a binary gradient mixture of pH 2.3 phosphate buffer and organic modifiers of acetonitrile, methanol, and isopropyl alcohol as the mobile phase. The stability‐indicating character of the proposed method was proven using stress testing study. The test method was validated for specificity, limit of detection, limit of quantitation, linearity, precision, accuracy, and robustness. For the propranolol and its ten organic impurities, the limit of quantitation, linearity, and recoveries were found in a range of 0.0123–0.4266 μg/mL ( R 2 > 0.9982) and 89.2–98.9%, respectively. The proposed liquid chromatography method is found to be highly suitable for impurity profiling of propranolol in bulk drugs and pharmaceutical formulations (tablets and capsules).