{"title":"On the type of the meromorphic function of finite order","authors":"M.V. Kabanko","doi":"10.35634/vm230202","DOIUrl":null,"url":null,"abstract":"Let $f(z)$ be a meromorphic function on the complex plane of finite order $\\rho>0$. Let $\\rho(r)$ be a proximate order in the sense of Boutroux such that $\\limsup\\limits_{r\\to\\infty}\\rho(r)=\\rho$, $\\liminf\\limits_{r\\to\\infty}\\rho(r)=\\alpha>0$. If $[\\alpha]<\\alpha\\leqslant\\rho<[\\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\\rho(r)$. If there are integers between $\\alpha$ and $\\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $f(z)$ be a meromorphic function on the complex plane of finite order $\rho>0$. Let $\rho(r)$ be a proximate order in the sense of Boutroux such that $\limsup\limits_{r\to\infty}\rho(r)=\rho$, $\liminf\limits_{r\to\infty}\rho(r)=\alpha>0$. If $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\rho(r)$. If there are integers between $\alpha$ and $\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.