Customer Churn Prediction through Attribute Selection Analysis and Support Vector Machine

Q2 Social Sciences
Jia Yi Vivian Quek, Ying Han Pang, Zheng You Lim, Shih Yin Ooi, Wee How Khoh
{"title":"Customer Churn Prediction through Attribute Selection Analysis and Support Vector Machine","authors":"Jia Yi Vivian Quek, Ying Han Pang, Zheng You Lim, Shih Yin Ooi, Wee How Khoh","doi":"10.18080/jtde.v11n3.777","DOIUrl":null,"url":null,"abstract":"An accurate customer churn prediction could alert businesses about potential churn customers so that proactive actions can be taken to retain the customers. Predicting churn may not be easy, especially with the increasing database sample size. Hence, attribute selection is vital in machine learning to comprehend complex attributes and identify essential variables. In this paper, a customer churn prediction model is proposed based on attribute selection analysis and Support Vector Machine. The proposed model improves churn prediction performance with reduced feature dimensions by identifying the most significant attributes of customer data. Firstly, exploratory data analysis and data preprocessing are performed to understand the data and preprocess it to improve the data quality. Next, two filter-based attribute selection techniques, i.e., Chi-squared and Analysis of Variance (ANOVA), are applied to the pre-processed data to select relevant features. Then, the selected features are input into a Support Vector Machine for classification. A real-world telecom database is used for model assessment. The empirical results demonstrate that ANOVA outperforms the Chi-squared filter in attribute selection. Furthermore, the results also show that, with merely ~50% of the features, feature selection based on ANOVA exhibits better performance compared to full feature set utilization.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n3.777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate customer churn prediction could alert businesses about potential churn customers so that proactive actions can be taken to retain the customers. Predicting churn may not be easy, especially with the increasing database sample size. Hence, attribute selection is vital in machine learning to comprehend complex attributes and identify essential variables. In this paper, a customer churn prediction model is proposed based on attribute selection analysis and Support Vector Machine. The proposed model improves churn prediction performance with reduced feature dimensions by identifying the most significant attributes of customer data. Firstly, exploratory data analysis and data preprocessing are performed to understand the data and preprocess it to improve the data quality. Next, two filter-based attribute selection techniques, i.e., Chi-squared and Analysis of Variance (ANOVA), are applied to the pre-processed data to select relevant features. Then, the selected features are input into a Support Vector Machine for classification. A real-world telecom database is used for model assessment. The empirical results demonstrate that ANOVA outperforms the Chi-squared filter in attribute selection. Furthermore, the results also show that, with merely ~50% of the features, feature selection based on ANOVA exhibits better performance compared to full feature set utilization.
基于属性选择分析和支持向量机的客户流失预测
准确的客户流失预测可以提醒企业潜在的流失客户,以便采取积极主动的行动来留住客户。预测用户流失可能并不容易,尤其是随着数据库样本规模的增加。因此,在机器学习中,属性选择对于理解复杂属性和识别基本变量至关重要。提出了一种基于属性选择分析和支持向量机的客户流失预测模型。该模型通过识别客户数据中最重要的属性,降低了特征维度,提高了客户流失预测的性能。首先进行探索性数据分析和数据预处理,了解数据并进行预处理,提高数据质量;接下来,将两种基于滤波器的属性选择技术,即卡方和方差分析(ANOVA)应用于预处理数据以选择相关特征。然后,将选择的特征输入到支持向量机中进行分类。一个真实的电信数据库被用于模型评估。实证结果表明,方差分析在属性选择方面优于卡方滤波。此外,结果还表明,与完全利用特征集相比,基于方差分析的特征选择仅使用约50%的特征,表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
37
期刊介绍: The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信