An automated system to distinguish between Corona and Viral Pneumonia chest diseases based on image processing techniques

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Amani Al-Ghraibah, Muneera Altayeb, Feras A. Alnaimat
{"title":"An automated system to distinguish between Corona and Viral Pneumonia chest diseases based on image processing techniques","authors":"Amani Al-Ghraibah, Muneera Altayeb, Feras A. Alnaimat","doi":"10.1080/21681163.2023.2261575","DOIUrl":null,"url":null,"abstract":"ABSTRACTRecently, huge concerns have been raised in diagnosing chest diseases, especially after the COVID-19 pandemic. Regular diagnosis processes of chest diseases sometimes fail to distinguish between Corona and Viral Pneumonia diseases through Polymerase Chain Reaction (PCR) tests which are a time-engrossing process that needs convoluted manual procedures. Artificial Intelligence (AI) techniques have achieved high performance in aiding medical diagnostic processes. The innovation of this work lies in using a new diagnostic technique to distinguish between COVID-19 and Viral Pneumonia diseases using advanced AI technologies. This is done by extracting novel features from chest X-ray images based on Wavelet analysis, Scale Invariant Feature Transformation (SIFT), and the Mel Frequency Cepstral Coefficient (MFCC). Support vector machines (SVM) and artificial neural networks (ANN) were utilized to build classification algorithms using 1200 chest X-ray mages for each case. Using Wavelet features, the results of evaluating the SVM and ANN models were 97% accurate, and with SIFT features, they were closer to 99%. The proposed models were very effective at identifying COVID-19 and Viral Pneumonitis, so physicians can determine the best treatment course for patients with the support of this high accuracy. Moreover, this model can be used in hospitals and emergency rooms when a massive number of patients are waiting, as it is faster and more accurate than the regular diagnosis processes as each step takes few seconds on average to complete.KEYWORDS: Chest X-ray imagesfeature extractionand SVMimage classifications Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":"68 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2023.2261575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTRecently, huge concerns have been raised in diagnosing chest diseases, especially after the COVID-19 pandemic. Regular diagnosis processes of chest diseases sometimes fail to distinguish between Corona and Viral Pneumonia diseases through Polymerase Chain Reaction (PCR) tests which are a time-engrossing process that needs convoluted manual procedures. Artificial Intelligence (AI) techniques have achieved high performance in aiding medical diagnostic processes. The innovation of this work lies in using a new diagnostic technique to distinguish between COVID-19 and Viral Pneumonia diseases using advanced AI technologies. This is done by extracting novel features from chest X-ray images based on Wavelet analysis, Scale Invariant Feature Transformation (SIFT), and the Mel Frequency Cepstral Coefficient (MFCC). Support vector machines (SVM) and artificial neural networks (ANN) were utilized to build classification algorithms using 1200 chest X-ray mages for each case. Using Wavelet features, the results of evaluating the SVM and ANN models were 97% accurate, and with SIFT features, they were closer to 99%. The proposed models were very effective at identifying COVID-19 and Viral Pneumonitis, so physicians can determine the best treatment course for patients with the support of this high accuracy. Moreover, this model can be used in hospitals and emergency rooms when a massive number of patients are waiting, as it is faster and more accurate than the regular diagnosis processes as each step takes few seconds on average to complete.KEYWORDS: Chest X-ray imagesfeature extractionand SVMimage classifications Disclosure statementNo potential conflict of interest was reported by the author(s).
基于图像处理技术的冠状肺炎和病毒性肺炎胸部疾病的自动区分系统
摘要近年来,特别是在COVID-19大流行之后,胸部疾病的诊断引起了人们的极大关注。常规的胸部疾病诊断过程有时无法通过聚合酶链反应(PCR)检测来区分冠状病毒和病毒性肺炎,这是一个耗时的过程,需要复杂的人工程序。人工智能(AI)技术在辅助医疗诊断过程中取得了很高的性能。这项工作的创新之处在于利用先进的人工智能技术,使用新的诊断技术来区分COVID-19和病毒性肺炎。这是通过基于小波分析、尺度不变特征变换(SIFT)和Mel频率倒谱系数(MFCC)从胸部x射线图像中提取新特征来实现的。利用支持向量机(SVM)和人工神经网络(ANN)对每个病例的1200张胸片进行分类。使用小波特征评价SVM和ANN模型的准确率为97%,使用SIFT特征评价SVM和ANN模型的准确率接近99%。所提出的模型在识别COVID-19和病毒性肺炎方面非常有效,因此医生可以在这种高精度的支持下为患者确定最佳治疗方案。此外,该模型可以用于大量患者等待的医院和急诊室,因为它比常规诊断过程更快,更准确,因为每一步平均只需几秒钟即可完成。关键词:胸部x线图像特征提取与svm图像分类披露声明作者未报告潜在利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.20%
发文量
102
期刊介绍: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信