Global structure of positive solutions for a fourth-order boundary value problem with singular data

IF 0.7 3区 数学 Q2 MATHEMATICS
Ruyun Ma, Zhongzi Zhao, Mantang Ma
{"title":"Global structure of positive solutions for a fourth-order boundary value problem with singular data","authors":"Ruyun Ma, Zhongzi Zhao, Mantang Ma","doi":"10.4171/zaa/1729","DOIUrl":null,"url":null,"abstract":"We are concerned with a problem described the deformation of a simply supported beam of the form $$ u^{(4)}(x)+c(x)u(x) + \\sum^p\\_{i=1}c\\_i\\delta(x-x\\_i)u(x) = \\lambda a(u(x)) + \\lambda\\sum^q\\_{j=1}a\\_j(u(x))\\delta(x-y\\_j), \\quad x\\in (0,1), $$ $$ u(0)=u(1)=u''(0)=u''(1)=0, $$ where $\\lambda$ is a positive parameter, $c\\in C(\\[0, 1],\\mathbb{R})$, $c\\_i \\in \\mathbb{R}$, $a, a\\_j\\in C(\\[0,\\infty),\\[0,\\infty))$, $i = 1, 2, \\ldots, p$, $j= 1, 2, \\ldots, q$, $p, q \\in \\mathbb{N}$. The Dirac delta impulses $\\delta = \\delta(x)$ are applied at given points $0 < x\\_1 < x\\_2 <\\cdots < x\\_p < 1$ and $0 < y\\_1 < y\\_2 < \\cdots < y\\_q < 1$. We investigate the global structure of positive solutions by the global bifurcation techniques.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"22 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/zaa/1729","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with a problem described the deformation of a simply supported beam of the form $$ u^{(4)}(x)+c(x)u(x) + \sum^p\_{i=1}c\_i\delta(x-x\_i)u(x) = \lambda a(u(x)) + \lambda\sum^q\_{j=1}a\_j(u(x))\delta(x-y\_j), \quad x\in (0,1), $$ $$ u(0)=u(1)=u''(0)=u''(1)=0, $$ where $\lambda$ is a positive parameter, $c\in C(\[0, 1],\mathbb{R})$, $c\_i \in \mathbb{R}$, $a, a\_j\in C(\[0,\infty),\[0,\infty))$, $i = 1, 2, \ldots, p$, $j= 1, 2, \ldots, q$, $p, q \in \mathbb{N}$. The Dirac delta impulses $\delta = \delta(x)$ are applied at given points $0 < x\_1 < x\_2 <\cdots < x\_p < 1$ and $0 < y\_1 < y\_2 < \cdots < y\_q < 1$. We investigate the global structure of positive solutions by the global bifurcation techniques.
一类具有奇异数据的四阶边值问题正解的全局结构
我们关注的是形式为$$ u^{(4)}(x)+c(x)u(x) + \sum^p\_{i=1}c\_i\delta(x-x\_i)u(x) = \lambda a(u(x)) + \lambda\sum^q\_{j=1}a\_j(u(x))\delta(x-y\_j), \quad x\in (0,1), $$$$ u(0)=u(1)=u''(0)=u''(1)=0, $$的简支梁的变形问题,其中$\lambda$是一个正参数,$c\in C(\[0, 1],\mathbb{R})$, $c\_i \in \mathbb{R}$, $a, a\_j\in C(\[0,\infty),\[0,\infty))$, $i = 1, 2, \ldots, p$, $j= 1, 2, \ldots, q$, $p, q \in \mathbb{N}$。狄拉克脉冲$\delta = \delta(x)$应用于给定点$0 < x\_1 < x\_2 <\cdots < x\_p < 1$和$0 < y\_1 < y\_2 < \cdots < y\_q < 1$。利用全局分岔技术研究了正解的全局结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信