Integrability for Hardy operators of double phase

IF 0.7 3区 数学 Q2 MATHEMATICS
Yoshihiro Mizuta, Tetsu Shimomura
{"title":"Integrability for Hardy operators of double phase","authors":"Yoshihiro Mizuta, Tetsu Shimomura","doi":"10.4171/zaa/1732","DOIUrl":null,"url":null,"abstract":"We establish Hardy–Sobolev and Hardy–Trudinger inequalities in weighted Orlicz spaces on $\\mathbb{R}^n$. As an application, we prove Hardy–Sobolev and Hardy–Trudinger inequalities in the framework of general double phase functionals given by $$ \\varphi\\_p(x,t) = \\varphi\\_1(t^p) + \\varphi\\_2((b(x)t)^p), \\quad x\\in \\mathbb{R}^n,, t \\ge 0, $$ where $p>1$, $\\varphi\\_1, \\varphi\\_2$ are positive convex functions on $(0,\\infty)$ and $b$ is a non-negative function on $\\[0,\\infty)$ which is Hölder continuous of order $\\theta \\in (0,1]$.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"117 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/zaa/1732","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish Hardy–Sobolev and Hardy–Trudinger inequalities in weighted Orlicz spaces on $\mathbb{R}^n$. As an application, we prove Hardy–Sobolev and Hardy–Trudinger inequalities in the framework of general double phase functionals given by $$ \varphi\_p(x,t) = \varphi\_1(t^p) + \varphi\_2((b(x)t)^p), \quad x\in \mathbb{R}^n,, t \ge 0, $$ where $p>1$, $\varphi\_1, \varphi\_2$ are positive convex functions on $(0,\infty)$ and $b$ is a non-negative function on $\[0,\infty)$ which is Hölder continuous of order $\theta \in (0,1]$.
双相Hardy算子的可积性
在$\mathbb{R}^n$上建立了加权Orlicz空间中的Hardy-Sobolev不等式和Hardy-Trudinger不等式。作为应用,我们在$$ \varphi\_p(x,t) = \varphi\_1(t^p) + \varphi\_2((b(x)t)^p), \quad x\in \mathbb{R}^n,, t \ge 0, $$给出的一般双相泛函的框架内证明了Hardy-Sobolev和Hardy-Trudinger不等式,其中$p>1$、$\varphi\_1, \varphi\_2$是$(0,\infty)$上的正凸函数,$b$是$\[0,\infty)$上的非负函数,它是Hölder阶$\theta \in (0,1]$连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信