A SURVEY ON CYCLOTOMIC SUBFIELDS

Javier Gomez-Calderon
{"title":"A SURVEY ON CYCLOTOMIC SUBFIELDS","authors":"Javier Gomez-Calderon","doi":"10.17654/0972087123018","DOIUrl":null,"url":null,"abstract":"This paper is a survey on cyclotomic subfields and an improved version of the author's work in [1-5]. We show a relationship between cyclotomic and Dickson polynomials with polynomials of the form$$R_n(x)=\\prod_{(i, n)=1}^{[(n / 2)]}\\left(x-\\varsigma_n^i-\\varsigma_n^{-i}\\right) .$$Based on these results, we show that $\\mathbb{Q}\\left(\\varsigma_d+\\varsigma_d^{-1}\\right) \\mid \\Lambda=\\mathbb{Z}\\left[\\varsigma_d+\\varsigma_d^{-1}\\right]$, where $\\Lambda$ denotes the ring of algebraic integers. Given a divisor $d$ of $\\left[\\mathbb{Q}\\left(\\varsigma_m\\right): \\mathbb{Q}\\right](m$ odd $)$, we also determine an algebraic integer $\\alpha$ generating a subfield $F$ of degree $d$ over $\\mathbb{Q}$, providing explicitly the minimum polynomial of $\\alpha$ for the cases $d=2$ and $d=\\phi(m) / 2$. Received: August 21, 2023Accepted: September 19, 2023","PeriodicalId":475301,"journal":{"name":"Far East Journal of Mathematical Sciences","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972087123018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a survey on cyclotomic subfields and an improved version of the author's work in [1-5]. We show a relationship between cyclotomic and Dickson polynomials with polynomials of the form$$R_n(x)=\prod_{(i, n)=1}^{[(n / 2)]}\left(x-\varsigma_n^i-\varsigma_n^{-i}\right) .$$Based on these results, we show that $\mathbb{Q}\left(\varsigma_d+\varsigma_d^{-1}\right) \mid \Lambda=\mathbb{Z}\left[\varsigma_d+\varsigma_d^{-1}\right]$, where $\Lambda$ denotes the ring of algebraic integers. Given a divisor $d$ of $\left[\mathbb{Q}\left(\varsigma_m\right): \mathbb{Q}\right](m$ odd $)$, we also determine an algebraic integer $\alpha$ generating a subfield $F$ of degree $d$ over $\mathbb{Q}$, providing explicitly the minimum polynomial of $\alpha$ for the cases $d=2$ and $d=\phi(m) / 2$. Received: August 21, 2023Accepted: September 19, 2023
切眼子场综述
本文是对切眼子场的综述,是作者[1-5]工作的改进版。我们用多项式的形式证明了切环多项式和迪克森多项式之间的关系$$R_n(x)=\prod_{(i, n)=1}^{[(n / 2)]}\left(x-\varsigma_n^i-\varsigma_n^{-i}\right) .$$基于这些结果,我们表明 $\mathbb{Q}\left(\varsigma_d+\varsigma_d^{-1}\right) \mid \Lambda=\mathbb{Z}\left[\varsigma_d+\varsigma_d^{-1}\right]$,其中 $\Lambda$ 表示代数整数环。给定一个除数 $d$ 的 $\left[\mathbb{Q}\left(\varsigma_m\right): \mathbb{Q}\right](m$ 奇数 $)$,我们也确定了一个代数整数 $\alpha$ 生成子字段 $F$ 程度 $d$ 结束 $\mathbb{Q}$的最小多项式 $\alpha$ 对于这些案例 $d=2$ 和 $d=\phi(m) / 2$. 收稿日期:2023年8月21日。收稿日期:2023年9月19日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信